Skip to main content
Log in

Asymptotic Behavior of the Subordinated Traveling Waves

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we investigate the long-time behavior of the subordination of the constant speed traveling waves by a general class of kernels. We use the Feller–Karamata Tauberian theorem in order to study the long-time behavior of the upper and lower wave. As a result we obtain the long-time behavior for the propagation of the front of the wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed-order diffusion-wave equation. I., II. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 465, pp. 1869–1891. The Royal Society (2009)

  2. Bazhlekova, E.: Subordination principle for a class of fractional order differential equations. Mathematics 3(2), 412–427 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bazhlekova, E.G.: Subordination principle for fractional evolution equations. Fract. Calc. Appl. Anal. 3(3), 213–230 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Bazhlekova, E.G.: Fractional Evolution Equations in Banach Spaces. Ph.D. thesis, University of Eindhoven (2001)

  5. Bertoin, J.: Lévy Processes, Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  6. Bingham, N.H.: Limit theorems for occupation times of Markov processes. Z. Wahrsch. verw. Gebiete 17, 1–22 (1971)

    Article  MathSciNet  Google Scholar 

  7. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation, Encyclopedia of Mathematics and Its Applications, vol. 27. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  8. Da Silva, J.L., Kondratiev, Y.G., Tkachov, P.: Fractional kinetic in spatial ecological model. Methods Funct. Anal. Topol. 24(3), 275–287 (2018)

    MATH  Google Scholar 

  9. Daftardar-Gejji, V., Bhalekar, S.: Boundary value problems for multi-term fractional differential equations. J. Math. Anal. Appl. 345(2), 754–765 (2008)

    Article  MathSciNet  Google Scholar 

  10. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  11. Finkelshtein, D., Kondratiev, Y., Tkachov, P.: Accelerated front propagation for monostable equations with nonlocal diffusion. J. Elliptic Parabol. Equ. 46(2), 423–471 (2019)

    Article  MathSciNet  Google Scholar 

  12. Finkelshtein, D., Kondratiev, Y., Tkachov, P.: Doubly nonlocal Fisher-KPP equation: speeds and uniqueness of traveling waves. Electron. J. Math. Anal. Appl. 475(1), 94–122 (2019)

    Article  MathSciNet  Google Scholar 

  13. Finkelshtein, D., Kondratiev, Y., Tkachov, P.: Existence and properties of traveling waves for doubly nonlocal Fisher-KPP equations. Electron. J. Differ. Equ. 2019(10), 1–27 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Finkelshtein, D., Kondratiev, Y.G., Kozitsky, Y., Kutoviy, O.: The statistical dynamics of a spatial logistic model and the related kinetic equation. Math. Models Methods Appl. Sci. 25(02), 343–370 (2015)

    Article  MathSciNet  Google Scholar 

  15. Finkelshtein, D.L., Kondratiev, Y.G., Kutoviy, O.: Vlasov scaling for stochastic dynamics of continuous systems. J. Stat. Phys. 141(1), 158–178 (2010), https://doi.org/10.1007/s10955-010-0038-1. http://link.springer.com/content/pdf/10.1007%2Fs10955-010-0038-1.pdf

  16. Finkelshtein, D..L., Kondratiev, Y..G., Kutoviy, O.: Vlasov scaling for the Glauber dynamics in continuum. Infin. Dimens. Anal. Quant. Probab. Relat. Top. 14(04), 537–569 (2011). https://doi.org/10.1142/s021902571100450x

    Article  MathSciNet  MATH  Google Scholar 

  17. Finkelshtein, D.L., Kondratiev, Y.G., Kutoviy, O., Lytvynov, E.: Binary jumps in continuum. II. Non-equilibrium process and a Vlasov-type scaling limit. J. Math. Phys. 52(11), 113509 (2011)

    Article  MathSciNet  Google Scholar 

  18. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions. Related Topics and Applications. Springer, Berlin (2014)

    Book  Google Scholar 

  19. Gorenflo, R., Luchko, Y., Mainardi, F.: Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 2(4), 383–414 (1999)

    MathSciNet  MATH  Google Scholar 

  20. Gorenflo, R., Umarov, S.: Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations. Part one. Z. Anal. Anwend. 24(3), 449–466 (2005)

    Article  Google Scholar 

  21. Hanyga, A.: Anomalous diffusion without scale invariance. J. Phys. A 40(21), 5551 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V, Amsterdam (2006)

    Google Scholar 

  23. Kochubei, A., Kondratiev, Y.G., da Silva, J.L.: From random times to fractional kinetics. Interdisciplinary Studies of Complex Systems 16, 5–32 (2020). https://doi.org/10.31392/iscs.2020.16.005. https://arxiv.org/abs/1811.10531

  24. Kochubei, A.N.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340(1), 252–281 (2008). https://doi.org/10.1016/j.jmaa.2007.08.024

    Article  MathSciNet  MATH  Google Scholar 

  25. Kochubei, A.N.: General fractional calculus, evolution equations, and renewal processes. Integral Equ. Oper. Theory 71(4), 583–600 (2011)

    Article  MathSciNet  Google Scholar 

  26. Kochubei, A.N., Kondratiev, Y.G.: Fractional kinetic hierarchies and intermittency. Kinet. Relat. Models 10(3), 725–740 (2017)

    Article  MathSciNet  Google Scholar 

  27. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010)

    Book  Google Scholar 

  28. Meerschaert, M.M., Scheffler, H.P.: Stochastic model for ultraslow diffusion. Stoch. Process. Appl. 116(9), 1215–1235 (2006)

    Article  MathSciNet  Google Scholar 

  29. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  30. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37(31), R161–R208 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  31. Prüss, J.: Evolutionary Integral Equations and Applications, Monographs in Mathematics, vol. 87. Birkhäuser, Basel (1993)

    Book  Google Scholar 

  32. Schilling, R.L., Song, R., Vondraček, Z.: Bernstein Functions: Theory and Applications. De Gruyter Studies in Mathematics, 2nd edn. De Gruyter, Berlin (2012)

    Book  Google Scholar 

  33. Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Modern Phys. 52(3), 569 (1980)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Center for Research in Mathematics and Applications (CIMA) related with the Statistics, Stochastic Processes and Applications (SSPA) group, through the Grant UIDB/MAT/04674/2020 of FCT-Fundação para a Ciência e a Tecnologia, Portugal. The financial support by the Ministry for Science and Education of Ukraine through Project 0119U002583 is gratefully acknowledged. Finally, we would like to thank the anonymous referee for pointing out some misprints and comments which improves the overall quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luís da Silva.

Additional information

Communicated by Clement Mouhot.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author is supported by the Ministry for Science and Education of Ukraine Grant 0119U002583 and the second by the Fundação para a Ciência e a Tecnologia, Portugal grant UIDB/MAT/04674/2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratiev, Y., Silva, J.L.d. Asymptotic Behavior of the Subordinated Traveling Waves. J Stat Phys 183, 7 (2021). https://doi.org/10.1007/s10955-021-02745-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02745-x

Keywords

Mathematics Subject Classification

Navigation