Skip to main content
Log in

New Algorithms for the Estimation of Two-Dimensional Cyclic Spectral Information Based on Tensor Equations

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

The hidden periodicity detection using a cyclic spectral function (CSF) is one of the well-known methods for cyclostationary signals analysis. Many two-dimensional signals (2D-signals), such as textures, can be considered cyclostationary or semi-cyclostationary. Applying such an assumption provides a new effective field for the analysis of 2D-signals. This paper presents two new algorithms for two-dimensional CSF (2D-CSF) estimation, namely two-dimensional tensor-based FFT accumulation method (2DT-FAM) and two-dimensional tensor-based strip spectral correlation analyzer (2DT-SSCA). These algorithms are fast and parallel. Moreover, they are based on tensor equations and linear-algebra that provide many advantages in the computational efficiency. Furthermore, the proposed schemes produce more information by preserving the information between pixels of an image using a two-dimensional window that improves classification accuracy and noise resistance property. To evaluate the performance of proposed algorithms, they are employed on two popular databases in texture analysis. 2DT-FAM as the unused promising texture analyzer and the new implementation of two-dimensional strip spectral correlation analyzer 2D-SSCA are compared with other state-of-the-art methods in terms of processing time, noise resistance, and classification accuracy. Experiment results show a 2% increase in correct classification rate and 10 times reduction in input feature dimensions in comparison with other studies and a 0.24 s decrease in processing times in comparison with the ordinary two-dimensional SSCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.

Similar content being viewed by others

References

  1. Gardner, W. A. (1986). Statistical spectral analysis: A nonprobabilistic theory. Englewood Cliffs: Prentice-Hall, Inc..

    MATH  Google Scholar 

  2. Gardner, W. A. (1991). Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Processing Magazine, 8(2), 14–36.

    Article  Google Scholar 

  3. Roberts, R. S., Brown, W. A., & Loomis, H. H. (1991). Computationally efficient algorithms for cyclic spectral analysis. IEEE Signal Processing Magazine, 8(2), 38–49.

    Article  Google Scholar 

  4. Gardner, W. A. (1988). Signal interception: A unifying theoretical framework for feature detection. IEEE Transactions on Communications, 36(8), 897–906.

    Article  Google Scholar 

  5. Mihandoost, S., & Amirani, M. C. (2015). EEG signal analysis using spectral correlation function & GARCH model. Signal, Image and Video Processing, 9(6), 1461–1472.

    Article  Google Scholar 

  6. Mihandoost, S., & Amirani, M. C. (2017). Cyclic spectral analysis of electrocardiogram signals based on GARCH model. Biomedical Signal Processing and Control, 31, 79–88.

    Article  Google Scholar 

  7. Sahami, S., & Amirani, M. C. (2013). Matrix based cyclic spectral estimator for fast and robust texture classification. The Visual Computer, 29(12), 1245–1257.

    Article  Google Scholar 

  8. Amirani, M. C., & Shirazi, A. A. B. (2009). Evaluation of the texture analysis using spectral correlation function. Fundamenta Informaticae, 95(2–3), 245–262.

    MathSciNet  Google Scholar 

  9. Song, K., Yan, Y., Zhao, Y., & Liu, C. (2015). Adjacent evaluation of local binary pattern for texture classification. Journal of Visual Communication and Image Representation, 33, 323–339.

    Article  Google Scholar 

  10. Mihandoost, S., & Amirani, M. C. (2018). Two-dimensional strip spectral correlation algorithm to fast estimation of 2D-cyclic spectral function for texture analysis. Multidimensional Systems and Signal Processing, 29(3), 1119–1134.

  11. Raghuwanshi, G., & Tyagi, V. (2016). Texture image retrieval using adaptive tetrolet transforms. Digital Signal Processing, 48, 50–57.

    Article  MathSciNet  Google Scholar 

  12. Wang, X., Guo, F. X., Xiao, B., & Ma, J. F. (2010). Rotation invariant analysis and orientation estimation method for texture classification based on radon transform and correlation analysis. Journal of Visual Communication and Image Representation, 21(1), 29–32.

    Article  Google Scholar 

  13. El Maliani, A. D., El Hassouni, M., Berthoumieu, Y., & Aboutajdine, D. (2014). Color texture classification method based on a statistical multi-model and geodesic distance. Journal of Visual Communication and Image Representation, 25(7), 1717–1725.

    Article  Google Scholar 

  14. Rosiles, J. G., Upadhyayula, S., & Cabrera, S. D. (2008). Rotationally-blind texture classification using frame sequential approximation error curves. In: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 1325-1328). IEEE.

  15. Zhao, Y., Zhang, L., Li, P., & Huang, B. (2007). Classification of high spatial resolution imagery using improved Gaussian Markov random-field-based texture features. IEEE Transactions on Geoscience and Remote Sensing, 45(5), 1458–1468.

    Article  Google Scholar 

  16. Mao, J., & Jain, A. K. (1992). Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognition, 25(2), 173–188.

    Article  Google Scholar 

  17. Abbadeni, N. (2010). Texture representation and retrieval using the causal autoregressive model. Journal of Visual Communication and Image Representation, 21(7), 651–664.

    Article  Google Scholar 

  18. Laine, A., & Fan, J. (1993). Texture classification by wavelet packet signatures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11), 1186–1191.

    Article  Google Scholar 

  19. Lu, C. S., Chung, P. C., & Chen, C. F. (1997). Unsupervised texture segmentation via wavelet transform. Pattern Recognition, 30(5), 729–742.

    Article  Google Scholar 

  20. Azencott, R., Wang, J. P., & Younes, L. (1997). Texture classification using windowed Fourier filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2), 148–153.

    Article  Google Scholar 

  21. Recio, J. A. R., Fernández, L. A. R., & Fernández-Sarriá, A. (2005). Use of Gabor filters for texture classification of digital images. Física de la Tierra, 17, 47.

    Google Scholar 

  22. Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.

    Article  Google Scholar 

  23. Guo, Z., Zhang, L., & Zhang, D. (2010a). A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing, 19(6), 1657–1663.

    Article  MathSciNet  Google Scholar 

  24. Liao, S., Law, M. W., & Chung, A. C. (2009). Dominant local binary patterns for texture classification. IEEE Transactions on Image Processing, 18(5), 1107–1118.

    Article  MathSciNet  Google Scholar 

  25. Iakovidis, D. K., Keramidas, E. G., & Maroulis, D. (2008). Fuzzy local binary patterns for ultrasound texture characterization. In: International Conference Image Analysis and Recognition (pp. 750–759). Springer Berlin Heidelberg.

  26. Zhao, Y., Huang, D. S., & Jia, W. (2012). Completed local binary count for rotation invariant texture classification. IEEE Transactions on Image Processing, 21(10), 4492–4497.

    Article  MathSciNet  Google Scholar 

  27. Zhang, B., Gao, Y., Zhao, S., & Liu, J. (2010). Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor. IEEE Transactions on Image Processing, 19(2), 533–544.

    Article  MathSciNet  Google Scholar 

  28. Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing, 19(6), 1635–1650.

    Article  MathSciNet  Google Scholar 

  29. Qian, X., Hua, X. S., Chen, P., & Ke, L. (2011). PLBP: An effective local binary patterns texture descriptor with pyramid representation. Pattern Recognition, 44(10), 2502–2515.

    Article  Google Scholar 

  30. Dullemond, K., & Peeters, K. (1991). Introduction to tensor calculus. Kees Dullemond and Kasper Peeters, 42–44.

  31. Abraham, R., Marsden, J. E., & Ratiu, T. (2012). Manifolds, tensor analysis, and applications (Vol. 75). Springer Science & Business Media.

  32. Brodatz, P. (1966). Textures: A photographic album for artists and designers, by Phil Brodatz. Dover publications.

  33. Junior, J. J. D. M. S., & Backes, A. R. (2016). ELM based signature for texture classification. Pattern Recognition, 51, 395–401.

  34. Ji, L., Ren, Y., Pu, X., & Liu, G. (2018). Median local ternary patterns optimized with rotation-invariant uniform-three mapping for noisy texture classification. Pattern Recognition, 79, 387–401.

  35. Burghouts, G. J., & Geusebroek, J. M. (2009). Material-specific adaptation of color invariant features. Pattern Recognition Letters, 30(3), 306–313.

    Article  Google Scholar 

  36. Ryu, J., & Yang, H. S. (2016). Locality-preserving descriptor for robust texture feature representation. Neuro Computing, 214, 729–738.

    Google Scholar 

  37. Cernadas, E., Fernández-Delgado, M., González-Rufino, E., & Carrión, P. (2017). Influence of normalization and color space to color texture classification. Pattern Recognition, 61, 120–138.

    Article  Google Scholar 

  38. Pan, Z., Wu, X., & Li, Z. (2019). Central pixel selection strategy based on local gray-value distribution by using gradient information to enhance LBP for texture classification. Expert Systems with Applications, 120, 319–334.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Chehel Amirani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mihandoost, S., Chehel Amirani, M. New Algorithms for the Estimation of Two-Dimensional Cyclic Spectral Information Based on Tensor Equations. J Sign Process Syst 93, 677–687 (2021). https://doi.org/10.1007/s11265-020-01635-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-020-01635-x

Keywords

Navigation