Skip to main content
Log in

On the origin of precipitation of transition metals implanted in MgO

  • Regular Article – Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Transition metals implanted in a stable oxide can either precipitate out at grain boundaries or can remain embedded in bulk. For MgO, experimentally it has been observed that some of the implanted Fe atoms precipitate out, while few Fe atoms in 2+ and 3+ charge states remain embedded in the lattice. Using first-principles calculations based on density functional theory, we show that formation energy, dopant site, barrier of transition and diffusivity, all these factors collectively determine the chance of precipitation of the implanted ion in the host lattice. Our calculations revealed that at 600 K (typical annealing temperature) while neutral iron in MgO would migrate 1 \(\mu \)m in few microseconds, it takes several years for the charged Fe ions to migrate the same distance. On the other hand, Ni ions in all its charge states (neutral, 1+, 2+, and 3+) would migrate 1 \(\mu \)m in just few microseconds, at 600 K. While explaining the experimentally observed precipitation of implanted Ni and few Fe atoms in MgO, this work provides a new scheme for predicting the stability of an implanted ion against precipitation in any stable rock-salt structured oxide.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The work presented here is entirely computational and theoretical. The data are expressed in figures and graphs in the manuscript.]

References

  1. H. N, S. I, O. T, T. H, W. H, T. T, “Nano-clustering of iron and magnetic properties of the iron implanted in mgo,” physica status solidi (a), vol. 189, no. 3, pp. 775–780, (2002)

  2. Z. Mao, Z. He, D. Chen, W. Cheung, S. Wong, Crystal orientation dependence of ferromagnetism in fe-implanted mgo single crystals. Solid State Commun. 142(6), 329–332 (2007)

    Article  ADS  Google Scholar 

  3. T.E. Mølholt, R. Mantovan, H.P. Gunnlaugsson, A. Svane, H. Masenda, D. Naidoo, K. Bharuth-Ram, M. Fanciulli, H.P. Gislason, K. Johnston, G. Langouche, S. Ólafsson, R. Sielemann, G. Weyer, Interstitial fe in mgo. J. Appl. Phys. 115(2), 023508 (2014)

    Article  ADS  Google Scholar 

  4. C. White, C. McHargue, P. Sklad, L. Boatner, G. Farlow, Ion implantation and annealing of crystalline oxides. Materials Sci. Rep. 4(2), 41–146 (1989)

    Article  Google Scholar 

  5. M. Cruz, R. [da Silva], J. Pinto, R. González, E. Alves, M. Godinho, “Magnetic behavior of co and ni implanted mgo,” Journal of Magnetism and Magnetic Materials, vol. 272-276, pp. 840 – 842, 2004. Proceedings of the International Conference on Magnetism (ICM 2003)

  6. S. Zhu, X. Xiang, X. Zu, L. Wang, “Magnetic nano-particles of ni in mgo single crystals by ion implantation,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 242, no. 1, pp. 114 – 117, (2006). Ion Beam Modification of Materials

  7. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996)

    Article  Google Scholar 

  8. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  9. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953 (1994)

    Article  ADS  Google Scholar 

  10. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  11. D. Misra, S. K. Yadav, “Prediction of site preference of implanted transition metal dopants in rock-salt oxides,” Scientific Reports, vol. 9, (2019)

  12. R. Ramprasad, H. Zhu, P. Rinke, M. Scheffler, New perspective on formation energies and energy levels of point defects in nonmetals. Phys. Rev. Lett. 108, 066404 (2012)

    Article  ADS  Google Scholar 

  13. C. Freysoldt, B. Lange, J. Neugebauer, Q. Yan, J.L. Lyons, A. Janotti, C.G. Van de Walle, Electron and chemical reservoir corrections for point-defect formation energies. Phys. Rev. B 93, 165206 (2016)

    Article  ADS  Google Scholar 

  14. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C.G. Van de Walle, First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014)

    Article  ADS  Google Scholar 

  15. S. Bajaj, G .S. Pomrehn, J .W. Doak, W. Gierlotka, H. jay Wu, S.-W. Chen, C. Wolverton, W .A. Goddard, G .J. Snyder, “Ab initio study of intrinsic point defects in pbte: an insight into phase stability,”. Acta. Materialia 92, 72–80 (2015)

    Article  ADS  Google Scholar 

  16. C.G. Van de Walle, J. Neugebauer, First-principles calculations for defects and impurities: applications to iii-nitrides. J. Appl. Phys. 95(8), 3851–3879 (2004)

    Article  ADS  Google Scholar 

  17. G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000)

  18. B.J. Wuensch, T. Vasilos, Diffusion of transition metal ions in single-crystal mgo. J. Chem. Phys. 36(11), 2917–2922 (1962)

    Article  ADS  Google Scholar 

  19. H.H. Wu, P. Wisesa, D.R. Trinkle, Oxygen diffusion in hcp metals from first principles. Phys. Rev. B 94, 014307 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank HPCE, IIT Madras for providing the computational facility and acknowledge Dr. Somnath Bhattacharya’s help for providing access to VASP source code.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the paper.

Corresponding author

Correspondence to Debolina Misra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, D., Yadav, S.K. On the origin of precipitation of transition metals implanted in MgO. Eur. Phys. J. B 94, 76 (2021). https://doi.org/10.1140/epjb/s10051-021-00085-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00085-z

Navigation