Skip to main content
Log in

Yttria-Stabilized Zirconia Assisted Green Electrochemical Preparation of Silicon from Solid Silica in Calcium Chloride Melt

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A novel integrated cell with O2-|YSZ|Pt|O2(air) reference and counter electrodes was constructed using a short yttria-stabilized zirconia solid electrolyte (YSZ) tube. Combining with cyclic voltammetry and potentiostatic electrolysis methods, green electrochemical preparation of Si from solid SiO2 in CaCl2 melt at 1173 K was studied via an experimental apparatus containing the novel integrated cell under completely carbon-free conditions; the effect of electrolysis time on the morphology of the Si product was also investigated by scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS). The results show that the morphology of the product obtained from potentiostatic electrolysis at a low overpotential (− 1.6 V) undergoes an evolution from SiO2 raw powder with different sizes to aggregates of spherical particles and small particles with partial reduction, and then to Si nuclei, and finally to Si wires or flakes. The morphology of electrolytic products has little relation with that of SiO2 raw powder and may be controlled by applying different potentials. Furthermore, the longer the electrolysis time, the more the Si wires grow, and the higher the Si purity overall. It is feasible that the experimental apparatus without the sealed stainless steel reactor and any carbonaceous materials can be used to prepare Si from solid SiO2 in CaCl2 melt and release O2 gas at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Z. Chen and D. J. Fray: Nature, 2000, vol. 407, pp. 36164.

    Article  CAS  Google Scholar 

  2. T. Nohira, K. Yasuda and Y. Ito: Nat. Mater., 2003, vol. 2, pp. 397401.

    Article  CAS  Google Scholar 

  3. X. Jin, P. Gao, D. Wang, X. Hu and G. Z. Chen: Angew. Chem. Int. Ed., 2004, vol. 43(6), pp. 73336.

    Article  CAS  Google Scholar 

  4. K. Yasuda, T. Nohira and Y. Ito: J. Phys. Chem. Solids, 2005, vol. 66, pp. 44347.

    Article  CAS  Google Scholar 

  5. J. Zhao, S. Lu, L. Hu and C. Li: J. Energy Chem., 2013, vol. 22, pp. 81925.

    Article  CAS  Google Scholar 

  6. K. Yasuda, T. Nohira, K. Kobayashi, N. Kani, T. Tsuda and R. Hagiwara: Energy Technol., 2013, vol. 1, pp. 24552.

    Article  CAS  Google Scholar 

  7. T. Homma T, N. Matsuo N, X. Yang, K. Yasuda, Y. Fukunaka and T. Nohira: Electrochim. Acta 2015, vol. 179, pp. 51218.

  8. X. Yang, K. Yasuda, T. Nohira, R. Hagiwara and T. Homma: Metall. Mater. Trans. B, 2016, vol. 47, pp. 78897.

    Article  Google Scholar 

  9. W. Xiao, X. Jin and G. Z. Chen: J. Mater. Chem. A, 2013, vol. 1, pp. 1024350.

    Article  CAS  Google Scholar 

  10. M. Zhong, X. Yang, K. Yasuda K, T. Homma and T. Nohira: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 34148.

  11. Y. Nishimura, T. Nohira, K. Kobayashi and R. Hagiwara: J. Electrochem. Soc., 2011, vol. 158 (6), pp. E5559.

    Article  CAS  Google Scholar 

  12. J. Yang, S. Lu, H. Ding, X. Zhang and S. Kan: Chinese J. Inorg. Chem., 2010, vol. 26(10), pp. 18371843.

    CAS  Google Scholar 

  13. J. Zhao, J. Li, P. Ying, W. Zhang, L. Meng and C. Li: Chem. Commun., 2013, vol. 49, pp. 447779.

    Article  CAS  Google Scholar 

  14. B. Zhao, X. Lu, X. Zou, S. Gu and W. Tao: Materials Science and Technology, 2011, vol. 19(2), pp. 11317.

    CAS  Google Scholar 

  15. G. Lai, X. Zou, H. Cheng, K. Zheng, S. Li, S. Geng and X. Lu: Journal of Functional Materials, 2016, vol. 47(2), pp. 217782.

    CAS  Google Scholar 

  16. K. Yasuda, T. Nohira, R. Hagiwara and Y. H. Ogata: Electrochim. Acta, 2007, vol. 53(1), pp. 10610.

    Article  CAS  Google Scholar 

  17. W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu and G. Z. Chen: Chemphyschem, 2006, vol. 7(8), pp. 175058.

    Article  CAS  Google Scholar 

  18. C. Z. Wang: Solid Electrolyte and Chemical Sensors, Metallurgical Industry Press, Beijing, 2000.

    Google Scholar 

  19. Y. Gao, X. Guo and K. Chou: Acta Metall. Sin., 2006, vol. 42(1): 8792.

    CAS  Google Scholar 

  20. X. Guan, S. Su,U. B. Pal and A. C. Powell: Metall. Mater. Trans. B, 2014, vol. 45, pp. 21382144.

    Article  Google Scholar 

  21. X. Guan, U. B. Pal, Y. Jiang and S. Su: J. Sustain. Metall., 2016, vol. 2, pp. 15266.

    Article  Google Scholar 

  22. A. Martin, D. Lambertin, J.-C. Poignet, M. Allibert, G. Bourges, L. Pescayre and J. Fouletier: JOM, 2003, vol. 55, pp. 5254.

    Article  CAS  Google Scholar 

  23. S. Li, X. Zou, K. Zheng, X. Lu, Q. Xu, C. Chen and Z. Zhou: J. Alloy. Compd., 2017, vol. 727, pp. 124352.

    Article  CAS  Google Scholar 

  24. S. C. Britten and U. B. Pal: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 733-53.

    Article  CAS  Google Scholar 

  25. C. Mallika, O. M. Sreedharan and R. Subasri: J. Eur. Ceram. Soc., 2000, vol. 20, pp. 229713.

    Article  CAS  Google Scholar 

  26. Y. Gao, C. Hong and C. Yang: J. Electrochem. Soc., 2015, vol. 162(14), pp. E36269.

    Article  CAS  Google Scholar 

  27. Y. Gao, C. Yang, C. Zhang, Q. Qin and G. Z. Chen: Phys. Chem. Chem. Phys., 2017, vol. 19, pp. 1587690.

    Article  CAS  Google Scholar 

  28. H. Hu,Y. Gao,Y. Lao, Q. Qin, G. Li and G. Z. Chen: Metall. Mater. Trans. B, 2018, vol. 49(5), pp. 2794808.

    Article  Google Scholar 

  29. W. Xiao, X. Jin, Y. Deng, D. Wang and G. Z. Chen: J. Electroanal. Chem., 2010, vol. 639, pp. 13040.

    Article  CAS  Google Scholar 

  30. http://www.factsage.com/. Accessed 20 Nov 2020.

  31. Ine Vanmoortel, Joost De Strycker, Eduard Temmerman and Annemie Adriaens: Ceramics - Silikáty, 2008, vol. 52(1), pp.17.

    CAS  Google Scholar 

  32. E. Ergül, İ. Karakaya and M. Erdoğan: J. Alloy. Compd., 2011, vol. 509(3), pp. 899-903.

    Article  Google Scholar 

  33. K. Yasuda, T. Nohira, R. Hagiwara and Y. H. Ogata: J. Electrochem. Soc., 2007, vol. 154(7), pp. E95101.

    Article  CAS  Google Scholar 

  34. W. Xiao, X. Wang, H. Yin, H. Zhu, X. Mao and D. Wang: RSC Adv., 2012, vol. 2(19), pp. 758893.

    Article  CAS  Google Scholar 

  35. W. Weng and W. Xiao: ACS Appl. Energy Mater., 2019, vol. 2(1), pp. 80413.

    CAS  Google Scholar 

  36. S. K. Cho, Fu-Ren F. Fan and A. J. Bard: Electrochim. Acta, 2012, vol. 65, pp. 5763.

  37. J. Xu, B. Lo, Y. Jiang, U. Pal and S. Basu: J. Eur. Ceram. Soc., 2014, vol. 34, pp. 388796.

    Article  CAS  Google Scholar 

  38. J. Guo, T. Villalon, U. Pal and S. Basu: J. Am. Ceram. Soc., 2018, vol. 101, pp. 3605-16.

    Article  CAS  Google Scholar 

  39. A. Martin, J. C. Poignet, J. Fouletier, M. Allibert, D. Lambertin and G. Bourgès: J. Appl. Electrochem., 2010, vol. 40, pp. 533–42.

    Article  CAS  Google Scholar 

  40. A Mukherjee, N Campagnol, JV Dyck, J Fransaer and B Blanpain: J. Am. Ceram. Soc., 2015, vol. 98, pp. 972–81.

    Article  CAS  Google Scholar 

  41. S. Su, U. Pal and X. Guan: J. Electrochem. Soc., 2017, vol. 164, pp. F248–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding provided by the National Natural Science Foundation of China (Grant No. 51174148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunming Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 25, 2020; accepted February 26, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Huang, Z., He, L. et al. Yttria-Stabilized Zirconia Assisted Green Electrochemical Preparation of Silicon from Solid Silica in Calcium Chloride Melt. Metall Mater Trans B 52, 1708–1715 (2021). https://doi.org/10.1007/s11663-021-02138-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02138-1

Navigation