Skip to main content
Log in

Insights from a new method providing single-shot, planar measurement of gas-phase temperature in particle-laden flows under high-flux radiation

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Two-colour laser-induced fluorescence (LIF) of toluene has been demonstrated to provide in situ, spatially resolved, planar measurements of the gas-phase temperature in a particle-laden flow with strong radiative heating at fluxes up to 42.8 MW/m2. Toluene was seeded in trace quantities into the gas flow laden with particles of mean diameter 173 μm at a volumetric loading sufficiently high for particle–fluid and particle–particle interactions to be significant. The particle number density was also measured simultaneously using Mie scattering. The two-colour LIF method was found to resolve temperature with a pixel-to-pixel standard deviation of 17.8 °C for unheated measurements in this system despite significant attenuation of the probe laser and signal trapping of the fluorescence emissions from the densely loaded particles. Following heating of the particles using high flux radiation, the increase in the gas-phase temperature from convection was found to be spatially non-uniform with highly localised regions of temperature spanning from ambient to 150 °C. This gas-phase heating continued well downstream from the limits of the region with radiative heating, with the time-averaged gas temperature increasing with distance at up to 2,200 °C/m on the jet centreline. The temperature of the flow was non-symmetrical in the direction of the heating beam, because the particles attenuate the radiation through absorption and scattering. The addition of radiation at fluxes up to 42.8 MW/m2 did not significantly change the particle number density distribution within the region investigated here.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Available upon request.

References

Download references

Funding

The authors would like to acknowledge the financial contributions of the Australian government through the Australian Research Council (Discovery grant 150,102,230 and linkage Grant LE130100127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elliott W. Lewis.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, E.W., Lau, T.C.W., Sun, Z. et al. Insights from a new method providing single-shot, planar measurement of gas-phase temperature in particle-laden flows under high-flux radiation. Exp Fluids 62, 80 (2021). https://doi.org/10.1007/s00348-021-03183-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-021-03183-x

Navigation