Skip to main content

Advertisement

Log in

Assessment of wind energy potential over India using high-resolution global reanalysis data

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

An assessment of wind energy potential based on wind speed data over the Indian subcontinent has been made using high spatio-temporal resolution global reanalysis for the period from 1979 to 2018. Regions of high wind speed exceeding 4.5 m/s are identified over West Rajasthan, West Gujarat, Saurashtra and Kutch, Central Maharashtra, Interior Karnataka, and Rayalaseema. Threshold wind speeds are noted to occur during the daytime, and during the summer months from May through September. Wind speeds and the spatial extent of threshold winds increase rapidly with height below 40 m and then gradually up to 100 m. The wind power density is highest between 50 and 80 m, with the potential highest over Gujarat, Kutch, and Interior Karnataka and moderate over Saurashtra and Rayalaseema. This study also notifies that offshore wind potential is higher than over land, and most of the western parts of India are congenial for low wind farming. The present study clearly delineates wind speed distributions and wind power productivity regions over the entire Indian subcontinent. The results would provide authentic wind speed and wind power potential information that would be useful for the industries, government agencies, and industries concerning wind harness over India.

Research Highlights

  1. 1.

    Wind power potential is assessed over the Indian subcontinent.

  2. 2.

    Spatial regions of wind speeds at different thresholds were identified.

  3. 3.

    Durations of wind speed hours per day for different thresholds were estimated.

  4. 4.

    Wind power potential at different heights was evaluated.

  5. 5.

    Favourable regions for wind farming over the Indian subcontinent were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Ahmed S A and Mahammed H O 2012 A statistical analysis of wind power density based on the Weibull and Ralyeigh models of Penjwen Region Sulaimani, Iraq; Jordan J. Mech. Ind. Eng. 6 135–140.

    Google Scholar 

  • Al-Mohamad A and Karmeh H 2003 Wind energy potential in Syria; Renew. Energy 28 1039–1046.

    Article  Google Scholar 

  • Al-Nhoud O and Al-Smairan M 2015 Assessment of wind energy potential as a power generation source in the Azraq South, Northeast Badia, Jordan; Modern Mechanical Engineering 5 87–96, https://doi.org/10.4236/mme.2015.53008.

    Article  Google Scholar 

  • Amin A L 1999 Liberalization of the Indian power industry, wind power in Gujarat; Renew. Energy 16 977–980.

    Google Scholar 

  • Ashtine M, Bello R and Higuch K 2016 Assessment of wind energy potential over Ontario and Great Lakes using the NARR data: 1980–2012; Renew. Sust. Energ. Rev. 56 272–282.

    Article  Google Scholar 

  • Bakshi R 2002 Wind energy in India; IEEE Power Eng. Rev. 22 16–18.

    Article  Google Scholar 

  • Belmonte Rivas M and Stoffelen A 2019 Characterizing ERA‐Interim and ERA5 surface wind biases using ASCAT; Ocean Sci. 15 831–852, https://doi.org/10.5194/os-15-831-2019.

  • Bhaskar Rao D V 2019 Numerical Weather Prediction; BS Publications Private Limited, 266p, ISBN: 9789387593961.

  • Blanco M I 2009 The economics of wind energy; Renew. Sust. Energ. Rev. 13 1372–1382, https://doi.org/10.1016/j.rser.2008.09.004.

    Article  Google Scholar 

  • Carrillo C, Cidras J, Diaz-Dorado E and Obando-Montaño A F 2014 An approach to determine the Weibull parameters for wind energy analysis: The case of Galicia (Spain); Energies 7 2676–2700, https://doi.org/10.3390/en7042676.

    Article  Google Scholar 

  • Central Electricity Authority 2020 Executive Summary on Power Sector; Ministry of Power, Government of India. http://cea.nic.in/reports/monthly/executivesummary/2020/exe_summary-05.pdf.

  • Chauhan S, Tcherniak D and Hansen M 2010 Dynamic characterization of operational wind turbines using operational modal analysis; In: Proceedings of China Wind Power, Beijing, China, pp. 13–15.

  • CWET 2010 Indian Wind Energy Atlas; Centre for Wind Energy Technology, http://www.cwet.tn.nic.in/docu/Indian_wind_atlas_brochure.pdf.

  • Dahmouni A W, Ben Salah M, Askri F, Kerkeni C and Ben Nasrallah S 2010 Wind energy in the Gulf of Tunis, Tunisia; Renew. Sust. Energ. Rev. 14 1303–1311.

    Article  Google Scholar 

  • Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge‐Sanz B M, Morcrette J ‐J, Park B‐K, Peubey C, de Rosnay P, Tavolato C, Thépaut J‐N and Vitart F 2011 The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system; Quart. J. Roy. Meteorol. Soc. 137 553–597, https://doi.org/10.1002/qj.828.

    Article  Google Scholar 

  • Dikko I and Yahaya D B 2012 Evaluation of wind power density in Gombe, Yola and Maiduguri, Northeastern Nigeria; J. Res. Peace, Gender Dev. 2 115–122.

    Google Scholar 

  • Dodla Venkata B, Satyanarayana G Ch and Srinivas Desamsetti 2017 Analysis and prediction of a catastrophic Indian coastal heat wave of 2015; Nat. Hazards 87 395–414, https://doi.org/10.1007/s11069-017-2769-7.

    Article  Google Scholar 

  • Dokur E and Kurban M 2015 Wind speed potential analysis based on Weibull distribution; Balkan J. Electr. Comput. Eng. 3 231–235, ISSN:2147-284X, https://doi.org/10.17694/bajece.72748.

  • Draxl C, Purkayastha A and Parker Z 2014 Wind resource assessment of Gujarat (India); Technical Report, NREL/TP-5000-61741, National Renewable Energy Laboratory, USA, https://doi.org/10.2172/1149654.

    Article  Google Scholar 

  • Dvorak M J, Archer C L and Jacobson M Z 2010 California offshore wind energy potential; Renew. Energy 35 1244–1254.

    Article  Google Scholar 

  • Elamouri M and Amar B F 2008 Wind energy potential in Tunisia; Renew. Energy 33 758–768.

    Google Scholar 

  • El-Osta W and Kalifa Y 2003 Prospects of wind power plants in Libya: A case study; Renew. Energy 28 363–371.

    Article  Google Scholar 

  • Farrugia R N 2002 The wind shear exponent in a Mediterranean Island climate; Renew. Energy 28 647–653.

    Article  Google Scholar 

  • Florin O, Deleanu L, Rusu L and Georgescu C 2016 Evaluation of the wind energy potential along the Mediterranean Sea coasts; Energ. Explor. Exploit. 34 766–792.

    Article  Google Scholar 

  • Fyrippis I, Axaopoulos P J and Panayiotou G 2010 Wind energy potential assessment in Naxos Island, Greece; Appl. Energy 87 577–586.

    Google Scholar 

  • Ghitas A E, Abulwfa A and Abdel-Hadi Y A 2016 An Assessment of wind energy potential as a power generation source in Helwan; J. Clean Energ. Technol. 4 453–456.

    Article  Google Scholar 

  • Gokcek M, Bayulken A and Bekdemir S 2007 Investigation of wind characteristics and wind energy potential in Kirklareli, Turkey; Renew. Energy 32 1739–1752.

    Article  Google Scholar 

  • Graham R M, Hudson S R and Maturilli M 2019 Improved performance of ERA5 in Arctic Gateway relative to four global atmospheric reanalyses; Geophys. Res. Lett. 46 6138–6147, https://doi.org/10.1029/2019GL082781.

    Article  Google Scholar 

  • Hersbach H 2019 ECMWF’s ERA5 reanalysis extends back to 1979; ECMWF Newsletter 158 ECMWF, UK.

  • Hersbach H, Bell B and Berrisford P et al. 2020 The ERA5 global reanalysis; Quart. J. Roy. Meteorol. Soc. 146 1999–2049, https://doi.org/10.1002/qj.3803.

    Article  Google Scholar 

  • Himrib Y, Rehmana S, Draouic B and Himri S 2008 Wind power potential assessment for three locations in Algeria; Renew. Sust. Energ. Rev. 12 2495–2504.

    Article  Google Scholar 

  • Hoffmann L, Gunther G, Dan Li, Stein Olaf, Wu Xue, Griessbach S, Heng Yi, Konopka P, Müller Rolf, Vogel B and Wright Jonathon 2019 From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations; Atmos. Chem. Phys. 19 3097–3124, https://doi.org/10.5194/acp-19-3097-2019.

    Article  Google Scholar 

  • Horanyi A 2017 Some aspects on the use and impact of observations in the ERA5 Copernicus climate change service reanalysis; Idojaras 121 329–344.

    Google Scholar 

  • Jeon J and James T W 2012 Using conditional kernel density estimation for wind power density forecasting; J. Am. Stat. Assoc. 107 66–79.

    Article  Google Scholar 

  • Kim G, Jeong W M, Lee K S, Jun K and Lee M E 2011 Offshore and nearshore wave energy assessment around the Korean peninsula; Energy 36 1460–1469.

    Article  Google Scholar 

  • Kumar T B, Sekhar O C, Ramamoorty M, Rao S K and Rao D V B 2017 Comparative study on wind forecasting models for day ahead power markets; IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), Kollam, pp. 1–5, https://doi.org/10.1109/spices.2017.8091273.

  • Lei Y, Letu H and Shang H et al. 2020 Cloud cover over the Tibetan Plateau and eastern China: A comparison of ERA5 and ERA-Interim with satellite observations; Clim. Dyn. 54 2941–2957, https://doi.org/10.1007/s00382-020-05149-x.

    Article  Google Scholar 

  • Mahyoub A H 2006 Assessment and analysis of wind power density in Taiz, Republic of Yemen; Assiut Univ. Center Environ. Stud. 9 13–20.

    Google Scholar 

  • Maina A W, Kamau J N and Timonah S 2016 Analysis of wind energy potential by different methods based on Weibull statistics for a site in Juja, Kenya; J. Multidiscip. Eng. Sci. Technol. 3 5123-5129, ISSN: 2458-9403.

  • Maity S, Das B, Maity R, Maity N P, Guha K and Srinivasa Rao K 2019 Improvement of quantum and power conversion efficiency through electron transport layer modification of ZnO/perovskite/PEDOT: PSS based organic heterojunction solar cell; Sol. Energy 185 439–444.

    Google Scholar 

  • Mani A and Mooley D A 1983 Wind energy data for India; Allied Publishers Private Limited, New Delhi, India, 545p.

    Google Scholar 

  • NYSERDA 2020 New York Wind Energy Guide for Local Decision Makers; https://www.nyserda.ny.gov/Researchers%20and%20Policymakers/Power%20Generation/Wind/Large%20Wind/New%20York%20Wind%20Energy%20Guide%20Local%20Decision%20Makers.

  • Odo F C, Offiah S U and Ugwuoke P E 2012 Weibull distribution-based model for prediction of wind potential in Enugu, Nigeria; Adv. Appl. Sci. Res. 3 1202–1208.

    Google Scholar 

  • Olauson J 2018 ERA5: The new champion of wind power modelling?; Renew. Energy 126 322–331.

    Article  Google Scholar 

  • Oluseyi A O, Ojo O and Vasel A 2019 On the need for the development of low wind speed turbine generator system; IOP Conf. Ser.: Earth Environ. Sci. 331 012062, https://iopscience.iop.org/article/10.1088/1755-1315/331/1/012062.

  • Petersen E L, Mortensen N G, Landberg L, Hùjstrup J and Frank H P 1998 Wind power meteorology. Part I: Climate and turbulence; Wind Energy 1 2–22.

    Article  Google Scholar 

  • Phadke A, Bharvirkar R and Khangura J 2011 Reassessing wind potential estimates for India: Economic and policy implications; No. LBNL-5077E, Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States).

  • Prakash R B R and Srinivasa Varma P 2017 Stability enhancement of wind power plant during abnormal conditions with negative sequence components compensation using statcom; J. Adv. Res. Dyn. Control Syst. 9(18) 85–95.

    Google Scholar 

  • Ramachandra T V and Shruthi B V 2003 Wind energy potential in Karnataka, India; Wind Energy 27 549–553.

    Google Scholar 

  • Rao K S 1986 Renewable energy in India; Electr. Conserv. Q 6 7–8.

    Google Scholar 

  • Reddy K K G, Venkatramana R S, Sarojamma B and Ramkumar T K 2015 Statistical analysis for wind energy estimation over Gadanki, India; Res. J. Eng. Technol. 1 30–40.

    Google Scholar 

  • REN21 2020 Renewables 2020 Global Status Report (Paris: REN21 Secretariat), ISBN 978-3-948393-00-7 (https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf).

  • Rusu L and Soares C G 2012 Wave energy assessments in the Azores islands; Renew. Energy 45 183–196, http://dx.doi.org/10.1016/j.renene.2012.02.027.

    Article  Google Scholar 

  • Sabique L, Yesubabu V, Hari Prasad D, Omar K and Ibrahim Hoteit 2016 A high-resolution assessment and wave energy potentials in the Red Sea; Appl. Energy 181 244–255.

    Article  Google Scholar 

  • Satyanarayana G C and Bhaskar Rao D V 2020 Phenology of heat waves over India; Atmos. Res. 245 105078, https://doi.org/10.1016/j.atmosres.2020.105078.

    Article  Google Scholar 

  • Satyanarayana G C, Lucy Supriya R H and Bhaskar Rao D V 2019 Wind energy assessment over the Andhra Pradesh and Telangana regions; Meteorol. Appl. 26 14–29, https://doi.org/10.1002/met.1730.

  • Sempreviva A M, Barthelmie R J and Pryor S C 2008 Review of methodologies for offshore wind resource assessment in European seas; Surv. Geophys. 29 471–497.

    Article  Google Scholar 

  • Standen J, Wilson C, Vosper S and Clark P 2017 Prediction of local wind climatology from Met Office models: Virtual Met Mast techniques; Wind Energy 20 411–430, https://doi.org/10.1002/we.2013.

    Article  Google Scholar 

  • Stull R 2015 Practical meteorology: An algebra-based survey of atmospheric science; Univ. British Columbia, 938p.

  • Tummala A, Velamati R K, Sinha D K, Indraja V and Krishna V H 2016 A review on small scale wind turbines; Renew. Sustain. Energy Rev. 56 1351–1371.

    Article  Google Scholar 

  • Urraca R, Huld T, Gracia-Amillo A, Martinez-de Pison F J, Kaspar F and Sanz-Garcia A 2018 Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data; Sol. Energy 164 339–354.

    Google Scholar 

  • Wakeyama T and S Ehara 2011 Estimation of renewable energy potential and use: A case study of Hokkaido; Northern-Tohoku Area and Tokyo Metropolitan; Japan; World Renewable Energy Congress-Sweden; 8–13 May, Linköping; Sweden. No. 057, Linköping University Electronic Press, pp. 3090–3097.

  • Wang C and Prinn R G 2010 Potential climatic impacts and reliability of very large-scale wind farms; Atmos. Chem. Phys. 10 2053–2061.

    Article  Google Scholar 

  • Wilks D S 2006 Statistical Methods in the Atmospheric Sciences; 2nd edn, Academic Press, London.

    Google Scholar 

  • Willow H, Gunturu U B and Schlosser A 2014 The potential wind power resource in Australia: A new perspective; PLoS ONE 9 e99608, https://doi.org/10.1371/journal.pone.0099608.

    Article  Google Scholar 

  • WMO (World Meteorological Organization) 1981 Meteorological aspects of the utilization of wind as an energy source, WMO Technical Note 175, World Meteorological Organization, Geneva.

    Google Scholar 

  • Wolde-Ghiorgis W 1998 Wind energy survey in Ethiopia; Solar Wind Technol. 5 341–351.

    Article  Google Scholar 

  • Wolfson R 2012 Energy, environment and climate; 2nd edn, WW Norton and Company Inc, New York, USA, pp. 366–370.

    Google Scholar 

  • Xi L, Michael B, McElroya and Kiviluomac J 2009 Global potential for wind-generated electricity; Proc. Natl. Acad. Sci. USA 106 10933–10938.

    Article  Google Scholar 

  • Yip C M A, Gunturu U B and Stenchikov G L 2016 Wind resource characterization in the Arabian Peninsula; Appl. Energy 164 826–836.

    Google Scholar 

  • Zheng C W and Li C Y 2015 Variation of the wave energy and significant wave height in the China Sea and adjacent waters; Renew. Sustain. Energy Rev. 43 381–387.

    Article  Google Scholar 

  • Zheng C W, Pan J and Li J X 2013 Assessing the China Sea wind energy and wave energy resources from 1988 to 2009; Ocean Eng. 65 39–48.

    Article  Google Scholar 

  • Zheng C W, Li C Y, Pan J, Liu M Y and Xia L L 2016 An overview of global ocean wind energy resource evaluations; Sustain. Energy Rev. 53 1240–1251.

    Article  Google Scholar 

  • Wei Zhou, Hongxing Yang and Zhaohong Fang 2006 Wind power potential and characteristic analysis of the Pearl River Delta region, China; Renew. Energy 31 739–753.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge free access to ERA data from the European Centre for Medium-Range Weather Forecasts (ECMWF), UK; AWS data from MOSDAC, Government of India; wind observations data at the turbine level from National Institute of Wind Energy, India. This research is supported by the Early Career Research Award, Science and Engineering Research Board, Government of India through financial support under grant No. ECR/2016/001295.

Author information

Authors and Affiliations

Authors

Contributions

G Ch Satyanarayana: Conceptualization, problem envision, methodology adoption, computation, visualization, data curation, validation, draft preparation, and writing; D V Bhaskar Rao: Intellectual contribution, original draft preparation, review and editing, and D Srinivas: Analysis and visualization, draft preparation, review and editing.

Corresponding author

Correspondence to China Satyanarayana Gubbala.

Additional information

Communicated by Kavirajan Rajendran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satyanarayana Gubbala, C., Dodla, V.B.R. & Desamsetti, S. Assessment of wind energy potential over India using high-resolution global reanalysis data. J Earth Syst Sci 130, 64 (2021). https://doi.org/10.1007/s12040-021-01557-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01557-7

Keywords

Navigation