Skip to main content
Log in

Computational Design of New Hydroborane Fullerene-Based Pincer Ligands

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We have designed new hydroborane fullerene-based pincer ligands of BH-(NCH2PR2)2C60, R = H, CH3, tBu and Ph, and their metal complexes. It is found that the substitution of CH3 and tBu for hydrogens of PH2 in flanking arms of BH-(NCH2PH2)2C60 significantly increases the electrophilicity of the considered fullerene-based pincer ligands. The pincer-ligated metal complexes are obtained by the addition of transition metals to the pincer bites. Based on natural bonding orbital analysis (NBO), stability of the considered complexes can be attributed to competition of electron density from the donor moieties (LP orbitals of phosphorous atoms in flanking arms and LP of transition metals) to the acceptor moieties (the n* orbitals of transition metals and empty orbitals of borons).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. E. van der Boo and D. Milstein (2003). Chem. Rev. 103, 1759.

    Article  CAS  Google Scholar 

  2. C. Gunanathan and D. Milstein (2014). Chem. Rev. 114, 12024.

    Article  CAS  PubMed  Google Scholar 

  3. H. A. Younus, N. Ahmad, W. Su, and F. Verpoort (2014). Coord. Chem. Rev. 276, 112.

    Article  CAS  Google Scholar 

  4. M. E. O’Reilly and A. S. Veige (2014). Chem. Soc. Rev. 43, 6325.

    Article  CAS  PubMed  Google Scholar 

  5. Q.-H. Deng, R. L. Melen, and L. H. Gade (2014). Acc. Chem. Res. 47, 3162.

    Article  CAS  PubMed  Google Scholar 

  6. N. Selander and K. J. Szabó (2011). Chem. Rev. 111, 2048.

    Article  CAS  PubMed  Google Scholar 

  7. J. Choi, A. H. R. MacArthur, M. Brookhart, and A. S. Goldman (2011). Chem. Rev. 111, 1761.

    Article  CAS  PubMed  Google Scholar 

  8. G. van Koten and D. Milstein, Organometallic Pincer Chemistry (Springer, Berlin, 2013).

    Book  Google Scholar 

  9. K. J. Szabo and O. F. Wendt, Pincer and Pincer-Type Complexes: Applications in Organic Synthesis and Catalysis (Wiley, Weinheim, 2014).

    Book  Google Scholar 

  10. C. J. Moulton and B. L. Shaw (1976). J Chem Soc Dalton Trans. https://doi.org/10.1039/DT9760001020.

    Article  Google Scholar 

  11. M. Asaya and D. Morales-Moralesa (2015). Dalton Trans. 44, 17432.

    Article  CAS  Google Scholar 

  12. S. Wanniarachchi, B. J. Liddle, J. Toussaint, S. V. Lindeman, B. Bennett, and J. R. Gardinier (2010). Dalton Trans. 39, 3167.

    Article  CAS  PubMed  Google Scholar 

  13. A. M. Prokhorov, T. Hofbeck, R. Czerwieniec, A. F. Suleymanova, D. N. Kozhevnikov, and H. Yersin (2014). J. Am. Chem. Soc. 136, 9637.

    Article  CAS  PubMed  Google Scholar 

  14. E.S.-H. Lam, W. H. Lam, and V.W.-W. Yam (2015). Inorg. Chem. 54, 3624.

    Article  CAS  PubMed  Google Scholar 

  15. G. van Koten and M. Albrecht (2001). Angew. Chem. Int. Ed. 40, 3750.

    Article  Google Scholar 

  16. E. Peris and R. H. Crabtree (2018). Chem. Soc. Rev. 47, 1959.

    Article  CAS  PubMed  Google Scholar 

  17. M. Gupta, C. Hagen, R. J. Flesher, W. C. Kaska, and C. M. Jensen (1996). Chem Commun. https://doi.org/10.1039/CC9960002083.

    Article  Google Scholar 

  18. J. I. van der Vlugt and J. N. H. Reek (2009). Angew. Chem. Int. Ed. 48, 8832.

    Article  CAS  Google Scholar 

  19. M. Albrecht and G. van Koten (2001). Angew. Chem. Int. Ed. 40, 3750.

    Article  CAS  Google Scholar 

  20. M. A. W. Lawrence, K.-A. Green, P. N. Nelson, and S. C. Lorraine (2018). Polyhedron 143, 11.

    Article  CAS  Google Scholar 

  21. Y. Segawa, M. Yamashita, and K. Nozaki (2009). J. Am. Chem. Soc. 131, 9201.

    Article  CAS  PubMed  Google Scholar 

  22. A. F. Hill, S. B. Lee, J. Park, R. Shang, and A. C. Willis (2010). Organometallics 29, 5661.

    Article  CAS  Google Scholar 

  23. I. R. Crossley, A. F. Hill, G. R. Owen, A. J. P. White, D. J. Williams, and A. C. Willis (2008). Organometallics 27, 381.

    Article  CAS  Google Scholar 

  24. M. Hasegawa, Y. Segawa, M. Yamashita, and K. Nozaki (2012). Angew. Chem. Int. Ed. 51, 5956.

    Article  CAS  Google Scholar 

  25. A. M. Spokoyny, M. G. Reuter, C. L. Stern, M. A. Ratner, T. Seideman, and C. A. Mirkin (2009). J. Am. Chem. Soc. 131, 9482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J. I. van der Vlugt (2010). Angew. Chem. Int. Ed. 49, 252.

    Article  CAS  Google Scholar 

  27. L. S. H. Dixon, A. F. Hill, A. Sinha, and J. S. Ward (2014). Organometallics 33, 653.

    Article  CAS  Google Scholar 

  28. Y. Segawa, M. Yamashita, and K. Nozaki (2009). Organometallics 28, 6234.

    Article  CAS  Google Scholar 

  29. M. E. El-Zaria, H. Arii, and H. Nakamura (2011). Inorg. Chem. 50, 4149.

    Article  CAS  PubMed  Google Scholar 

  30. R. J. Burford, W. E. Piers, D. H. Ess, and M. Parvez (2014). J. Am. Chem. Soc. 136, 3256.

    Article  CAS  PubMed  Google Scholar 

  31. J. J. Davidson, J. C. DeMott, C. Douvris, C. M. Fafard, N. Bhuvanesh, C.-H. Chen, D. E. Herbert, C.-I. Lee, B. J. McCulloch, B. M. Foxman, and O. V. Ozerov (2015). Inorg. Chem. 54, 2916.

    Article  CAS  PubMed  Google Scholar 

  32. M. C. Haibach, D. Y. Wang, T. J. Emge, K. Krogh-Jespersen, and A. S. Goldman (2013). Chem. Sci. 4, 3683.

    Article  CAS  Google Scholar 

  33. N. P. Mankad, E. Rivard, S. B. Harkins, and J. C. Peters (2005). J. Am. Chem. Soc. 127, 16032.

    Article  CAS  PubMed  Google Scholar 

  34. Y.-E. Kim, S. Oh, S. Kim, O. Kim, J. Kim, S. W. Han, and Y. Lee (2015). J. Am. Chem. Soc. 137, 4280.

    Article  CAS  PubMed  Google Scholar 

  35. H. Yang and F. P. Gabbaï (2014). J. Am. Chem. Soc. 136, 10866.

    Article  CAS  PubMed  Google Scholar 

  36. E. E. Korshin, G. Leitus, L. J. W. Shimon, L. Konstantinovski, and D. Milstein (2008). Inorg. Chem. 47, 7177.

    Article  CAS  PubMed  Google Scholar 

  37. M. C. MacInnis, D. F. MacLean, R. J. Lundgren, R. McDonald, and L. Turculet (2007). Organometallics 26, 6522.

    Article  CAS  Google Scholar 

  38. S. J. Mitton, R. McDonald, and L. Turculet (2009). Organometallics 28, 5122.

    Article  CAS  Google Scholar 

  39. J. Takaya and N. Iwasawa (2008). J. Am. Chem. Soc. 130, 15254.

    Article  CAS  PubMed  Google Scholar 

  40. M. T. Whited, A. M. Deetz, J. W. Boerma, D. E. DeRosha, and D. E. Janzen (2014). Organometallics 33, 5070.

    Article  CAS  Google Scholar 

  41. Y. Zhao and D. G. Truhlar (2008). Theor. Chem. Account. 120, 215.

    Article  CAS  Google Scholar 

  42. S. F. Boys and F. Bernardi (1970). Mol. Phys. 19, 553.

    Article  CAS  Google Scholar 

  43. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery (1993). J. Comput. Chem. 14, 1347.

    Article  CAS  Google Scholar 

  44. M. S. Gordon, M. W. Schmidt, in C. E. Dykstra, G. Frenking, K. S. Kim, G. E. Scuseria (eds.), Theory and Applications of Computational Chemistry: The First Forty Years (Elsevier, Amsterdam, 2005)

  45. A. E. Reed, L. A. Curtiss, and F. Weinhold (1988). Chem. Rev. 88, 899.

    Article  CAS  Google Scholar 

  46. A. E. Reed, R. B. Weinstock, and F. Weinhold (1985). J. Chem. Phys. 83, 735.

    Article  CAS  Google Scholar 

  47. K. Hedberg, L. Hedberg, D. S. Bethune, C. A. Brown, H. C. Dorn, R. D. Johnson, and M. Vries (1991). Science 254, 410.

    Article  CAS  PubMed  Google Scholar 

  48. J. M. Hawkins, A. Meyer, T. A. Lewis, S. D. Loren, and F. J. Hollander (1991). Science 252, 312.

    Article  CAS  PubMed  Google Scholar 

  49. G. P. Miller (2006). C. R. Chim. 9, 952.

    Article  CAS  Google Scholar 

  50. Y. Li, D. Xu, and L. Gan (2016). Angew. Chem. Int. 128, 2529.

    Article  Google Scholar 

  51. R. Seshadri, A. Govindaraj, R. Nagarajan, T. Pradeep, and C. N. R. Rao (1992). Tetrahedron Lett. 33, 2069.

    Article  CAS  Google Scholar 

  52. D. Schuhknecht, F. Ritter, and M. E. Tauchert (2016). Chem. Commun. 52, 11823.

    Article  CAS  Google Scholar 

  53. R. G. Parr, L. V. Szentpály, and S. Liu (1999). J. Am. Chem. Soc. 121, 1922.

    Article  CAS  Google Scholar 

  54. R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke (1978). J. Chem. Phys. 68, 3801.

    Article  CAS  Google Scholar 

  55. N. Gunawardhana, S. L. Gipson, and A. Franken (2009). Inorg. Chim. Acta 362, 113.

    Article  CAS  Google Scholar 

  56. M. A. Burton, D. T. Halfen, and L. M. Ziurys (2018). Chem. Phys. Lett. 708, 228.

    Article  CAS  Google Scholar 

  57. L. R. Gray, A. L. Hale, W. Levason, F. P. McCullough, and M. Webster (1984). J Chem Soc Dalton Trans. https://doi.org/10.1039/DT9910003149.

    Article  Google Scholar 

  58. Y. Sekiguchi, F. Meng, H. Tanaka, A. Eizawa, K. Arashiba, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi (2018). Dalton Trans. 47, 11322.

    Article  CAS  PubMed  Google Scholar 

  59. A. Aloisi, J.-C. Berthet, and T. Cantat (2016). Dalton Trans. 45, 14774.

    Article  CAS  PubMed  Google Scholar 

  60. G. Leone, G. Zanchin, I. Pierro, A. Sommazzi, A. Forni, and G. Ricci (2017). Catalysts 7, 369.

    Article  CAS  Google Scholar 

  61. C.-M. Lee, M. Sankaralingam, and C.-H. Chuo (2019). Dalton Trans. 48, 5203.

    Article  CAS  PubMed  Google Scholar 

  62. U. J. Kilgore, M. P. Stewart, M. L. Helm, W. G. Dougherty, W. S. Kassel, M. R. DuBois, D. L. DuBois, and R. M. Bullock (2011). Inorg. Chem. 7, 10908.

    Article  CAS  Google Scholar 

  63. B. Jana, A. Ellern, O. Pestovsky, A. Sadow, and A. Bakac (2011). Inorg. Chem. 50, 3010.

    Article  CAS  PubMed  Google Scholar 

  64. A. Parveen, E. N. Rao, B. Adivaiah, P. Anees, and G. Vaitheeswaran (2018). Phys. Chem. Chem. Phys. 20, 5084.

    Article  CAS  PubMed  Google Scholar 

  65. X.-R. You and H.-J. Zhai (2018). ACS Omega 3, 11958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge for the financial support from the Research Council of Alzahra University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Anafcheh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anafcheh, M., Zahedi, M. Computational Design of New Hydroborane Fullerene-Based Pincer Ligands. J Clust Sci 33, 1239–1248 (2022). https://doi.org/10.1007/s10876-021-02051-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02051-2

Keywords

Navigation