Skip to main content
Log in

Latex/AgNPs: Synthesis, and Their Antibacterial Activity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Silver nanoparticles (Ag NPs) coated by an aqueous emulsion of copolymer were elaborated in a short time using polyol process and microwave (MW) heating. This approach is based on reducing AgNO3 powder in the presence of two main components; ethylene glycol as a dispersed medium and an industrial copolymer (latex) as protecting agent. The structural, morphological and optical properties of the prepared silver nanoparticles have been investigated by UV–Vis spectroscopy, Infrared Spectroscopy (IR), X Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). It was found that all these properties are strongly correlated to the latex copolymer concentration and the MW heating process. The absorption band was determined by UV Visible spectra, showing several bands (localized surface Plasmon band) in the visible region at wavelengths between 410 and 430 nm. The TEM analysis of the obtained products indicates the presence of straight nanowires and dispersed, spherical silver nanoparticles with well-controlled size ranging from 7 to 20 nm. The X Ray Diffraction showed that silver nanoparticles synthesized exhibit face centered cubic (fcc) structure. The infrared spectra show the strong coordination between the surface of silver particles and molecules of latex by O–H and C=O groups. Antimicrobial activity of latex/Ag NPs against E. coli, Staphylococcus aureus, and Pseudomonas aeruginosa has been also demonstrated. The results indicated that latex/AgNPs may damage the structure of bacterial cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Syafiuddin, M. R. Salim, A. Beng Hong Kueh, T. Hadibarata, and H. Nur (2017). A review of silver nanoparticles: research trends, global consumption, synthesis, properties, and future challenges. J. Chin. Chem. Soc. 64, 732–756.

    Article  CAS  Google Scholar 

  2. A. Kumar, P. K. Vemula, P. M. Ajayan, and G. John (2008). Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 7, 236–241.

    Article  CAS  PubMed  Google Scholar 

  3. A. Desireddy, B. E. Conn, J. Guo, B. Yoon, R. N. Barnett, B. M. Monahan, K. Kirschbaum, W. P. Griffith, R. L. Whetten, and U. Landman (2013). Ultrastable silver nanoparticles. Nature 501, 399–402.

    Article  CAS  PubMed  Google Scholar 

  4. Y. Sun and Y. Xia (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179.

    Article  CAS  PubMed  Google Scholar 

  5. H. A. Atwater and A. Polman (2011). Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213.

    Article  CAS  Google Scholar 

  6. W.-R. Li, X.-B. Xie, Q.-S. Shi, H.-Y. Zeng, Y.-S. Ou-Yang, and Y.-B. Chen (2010). Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 85, 1115–1122.

    Article  CAS  PubMed  Google Scholar 

  7. C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang (2014). In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 35, 393–400.

    Article  CAS  PubMed  Google Scholar 

  8. I. Sondi and B. Salopek-Sondi (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275, 177–182.

    Article  CAS  PubMed  Google Scholar 

  9. S. Hirano, Y. Wakasa, A. Saka, S. Yoshizawa, Y. Oya-Seimiya, Y. Hishinuma, A. Nishimura, A. Matsumoto, and H. Kumakura (2003). Preparation of Bi-2223 bulk composed with silver-alloy wire. Physica C 392, 458–462.

    Article  CAS  Google Scholar 

  10. Z.-Y. Hong, H.-Y. Feng, and L.-H. Bu (2020). Melanin-based nanomaterials: The promising nanoplatforms for cancer diagnosis and therapy. Nanomed. Nanotechnol. Biol. Med. 28, 102211.

    Article  CAS  Google Scholar 

  11. G. Vares, V. Jallet, Y. Matsumoto, C. Rentier, K. Takayama, T. Sasaki, Y. Hayashi, H. Kumada, and H. Sugawara (2020). Functionalized mesoporous silica nanoparticles for innovative boron-neutron capture therapy of resistant cancers. Nanomed. Nanotechnol. Biol. Med. 27, 102195.

    Article  CAS  Google Scholar 

  12. M. M. Khan, A. Madni, N. Filipczak, J. Pan, M. Rehman, N. Rai, S. A. Attia, and V. P. Torchilin (2020). Folate targeted lipid chitosan hybrid nanoparticles for enhanced anti-tumor efficacy. Nanomed. Nanotechnol. Biol. Med. 28, 102228.

    Article  CAS  Google Scholar 

  13. A. N. Shipway, M. Lahav, and I. Willner (2000). Nanostructured gold colloid electrodes. Adv. Mater. 12, 993–998.

    Article  CAS  Google Scholar 

  14. H. Jiang, S. Manolache, A. C. L. Wong, and F. S. Denes (2004). Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. J. Appl. Polym. Sci. 93, 1411–1422.

    Article  CAS  Google Scholar 

  15. Y. Cui and C. M. Lieber (2001). Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853.

    Article  CAS  PubMed  Google Scholar 

  16. V. K. Sharma, R. A. Yngard, and Y. Lin (2009). Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145, 83–96.

    Article  CAS  PubMed  Google Scholar 

  17. L. K. Kurihara, G. M. Chow, and P. E. Schoen (1995). Nanocrystalline metallic powders and films produced by the polyol method. Nanostruct. Mater. 5, 607–613.

    Article  CAS  Google Scholar 

  18. F. Fiévet and R. Brayner (2013). The polyol process. Nanomaterials: A Danger or a Promise? Springer, Berlin, pp 1–25.

    Google Scholar 

  19. G. G. Couto, J. J. Klein, W. H. Schreiner, D. H. Mosca, A. J. de Oliveira, and A. J. Zarbin (2007). Nickel nanoparticles obtained by a modified polyol process: synthesis, characterization, and magnetic properties. J. Colloid Interface Sci. 311, 461–468.

    Article  CAS  PubMed  Google Scholar 

  20. M. Kristl, B. Dojer, S. Gyergyek, and J. Kristl (2017). Synthesis of nickel and cobalt sulfide nanoparticles using a low cost sonochemical method. Heliyon 3, e00273.

    Article  PubMed  PubMed Central  Google Scholar 

  21. H. Wang, J.-R. Zhang, X.-N. Zhao, S. Xu, and J.-J. Zhu (2002). Preparation of copper monosulfide and nickel monosulfide nanoparticles by sonochemical method. Mater. Lett. 55, 253–258.

    Article  CAS  Google Scholar 

  22. Q. Liao, R. Tannenbaum, and Z. L. Wang (2006). Synthesis of FeNi3 alloyed nanoparticles by hydrothermal reduction. J. Phys. Chem. B 110, 14262–14265.

    Article  CAS  PubMed  Google Scholar 

  23. Z. G. Wu, M. Munoz, and O. Montero (2010). The synthesis of nickel nanoparticles by hydrazine reduction. Adv. Powder Technol. 21, 165–168.

    Article  CAS  Google Scholar 

  24. Y.-P. Sun, H. W. Rollins, and R. Guduru (1999). Preparations of nickel, cobalt, and iron nanoparticles through the rapid expansion of supercritical fluid solutions (RESS) and chemical reduction. Chem. Mater. 11, 7–9.

    Article  CAS  Google Scholar 

  25. L. Guo, Q. Huang, X. Li, and S. Yang (2001). Iron nanoparticles: synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Phys. Chem. Chem. Phys. 3, 1661–1665.

    Article  CAS  Google Scholar 

  26. D.-H. Chen and S.-H. Wu (2000). Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem. Mater. 12, 1354–1360.

    Article  CAS  Google Scholar 

  27. N. A. Dhas, C. P. Raj, and A. Gedanken (1998). Synthesis, characterization, and properties of metallic copper nanoparticles. Chem. Mater. 10, 1446–1452.

    Article  CAS  Google Scholar 

  28. K. Y. Jung, J. H. Lee, H. Y. Koo, Y. C. Kang, and S. B. Park (2007). Preparation of solid nickel nanoparticles by large-scale spray pyrolysis of Ni (NO3)2· 6H2O precursor: effect of temperature and nickel acetate on the particle morphology. Mater. Sci. Eng. B 137, 10–19.

    Article  CAS  Google Scholar 

  29. R. Bussamara, D. Eberhardt, A. F. Feil, P. Migowski, H. Wender, D. P. de Moraes, G. Machado, R. M. Papaléo, S. R. Teixeira, and J. Dupont (2013). Sputtering deposition of magnetic Ni nanoparticles directly onto an enzyme surface: a novel method to obtain a magnetic biocatalyst. Chem. Commun. 49, 1273–1275.

    Article  CAS  Google Scholar 

  30. T. Darmanin, P. Nativo, D. Gilliland, G. Ceccone, C. Pascual, B. De Berardis, F. Guittard, and F. Rossi (2012). Microwave-assisted synthesis of silver nanoprisms/nanoplates using a “modified polyol process.” Colloids Surf. Physicochem. Eng. Asp. 395, 145–151.

    Article  CAS  Google Scholar 

  31. T. Tuval and A. Gedanken (2007). A microwave-assisted polyol method for the deposition of silver nanoparticles on silica spheres. Nanotechnology 18, 255601.

    Article  CAS  Google Scholar 

  32. A. Pal, S. Shah, and S. Devi (2009). Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. Mater. Chem. Phys. 114, 530–532.

    Article  CAS  Google Scholar 

  33. G. Dzido and A. B. Jarzębski (2011). Fabrication of silver nanoparticles in a continuous flow, low temperature microwave-assisted polyol process. J. Nanoparticle Res. 13, 2533–2541.

    Article  CAS  Google Scholar 

  34. A. D. Russell and W. B. Hugo (1994). Antimicrobial activity and action of silver. Prog. Med. Chem. 31, 351–370.

    Article  CAS  PubMed  Google Scholar 

  35. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman (2005). The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346–2353.

    Article  CAS  PubMed  Google Scholar 

  36. X.-H.N. Xu, W. J. Brownlow, S. V. Kyriacou, Q. Wan, and J. J. Viola (2004). Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry 43, 10400–10413.

    Article  CAS  PubMed  Google Scholar 

  37. C.-N. Lok, C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P.K.-H. Tam, J.-F. Chiu, and C.-M. Che (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5, 916–924.

    Article  CAS  PubMed  Google Scholar 

  38. M. Khan, M. R. Shaik, S. T. Khan, S. F. Adil, M. Kuniyil, M. Khan, A. A. Al-Warthan, M. R. H. Siddiqui, and M. Nawaz Tahir (2020). Enhanced antimicrobial activity of biofunctionalized zirconia nanoparticles. ACS Omega 5, 1987–1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ouaskit S, Eddahbi A, Moustade M, Adhiri R, Ider M and Abderrafi K (2014). Method for preparing metal nanoparticles in an aqueous latex emulsion under microwave irradiation.

  40. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677.

    Article  CAS  Google Scholar 

  41. A. L. Stepanov (2004). Optical properties of metal nanoparticles synthesized in a polymer by ion implantation: a review. Technol. Phys. 49, 143–153.

    Article  CAS  Google Scholar 

  42. A. Moumen, W. Halim, S. Jaffal, K. Abderrafi, A. Eddahbi, S. Sebti, and S. Ouaskit (2017). Microwave assisted synthesis of palladium nanoparticles in an aqueous emulsion of copolymer: application to catalysis. J. Clust. Sci. 28, 2817–2832.

    Article  CAS  Google Scholar 

  43. M. Ider, K. Abderrafi, A. Eddahbi, S. Ouaskit, and A. Kassiba (2017). Rapid synthesis of silver nanoparticles by microwave-polyol method with the assistance of latex copolymer. J. Clust. Sci. 28, 1025–1040.

    Article  CAS  Google Scholar 

  44. A. Eddahbi, M. Ider, M. Tabti, S. Ouaskit, M. Moussetade, and K. Abderrafi (2013). A novel synthetic route for preparation of Ag nanoparticles in aqueous emulsion of copolymer template. J. Optoelectron. Adv. Mater. 15 (11), 1228–1232.

    Google Scholar 

  45. H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, and A. Misra (2009). Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf. Physicochem. Eng. Asp. 339, 134–139.

    Article  CAS  Google Scholar 

  46. W. Halim, S. Coste, S. Zeroual, A. Kassiba, and S. Ouaskit (2020). Latex copolymer-assisted synthesis of metal-doped TiO2 mesoporous structures for photocatalytic applications under solar simulator. J. Mater. Sci. Mater. Electron. 31, 4161–4169.

    Article  CAS  Google Scholar 

  47. K. Shameli, M. B. Ahmad, S. D. Jazayeri, S. Sedaghat, P. Shabanzadeh, H. Jahangirian, M. Mahdavi, and Y. Abdollahi (2012). Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. Int. J. Mol. Sci. 13, 6639–6650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. M. B. Ahmad, M. Y. Tay, K. Shameli, M. Z. Hussein, and J. J. Lim (2011). Green synthesis and characterization of silver/chitosan/polyethylene glycol nanocomposites without any reducing agent. Int. J. Mol. Sci. 12, 4872–4884.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. S. Porel, S. Singh, and T. P. Radhakrishnan (2005). Polygonal gold nanoplates in a polymer matrix. Chem. Commun. Camb. Engl. 18, 2387–2389.

    Article  CAS  Google Scholar 

  50. E. Hoseinzadeh, M.-Y. Alikhani, M.-R. Samarghandi, and M. Shirzad-Siboni (2014). Antimicrobial potential of synthesized zinc oxide nanoparticles against gram positive and gram negative bacteria. Desalin. Water Treat. 52, 4969–4976.

    Article  CAS  Google Scholar 

  51. J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta, and S. Mukherji (2008). Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4, 707–716.

    Article  CAS  PubMed  Google Scholar 

  52. Wayne, Pennsylvanie (2006). Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard, 9eme ed. CLSI, 2006; M2-A9, 26 (1)

  53. N. Vijay, K. Shailesh, S. Sanjay-Mohan, P. Naveen, and C. Manu (2010). Time–kill curve studies of Acnano against Staphylococcus aureus and Staphlococcus epidermidis. Int. J. Drug Dev. Res. 2, 129–133.

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr A. Semmeq and H. Jabraoui (University of Lorraine) for the constructive corrections and comments on the manuscript.

Funding

This project was financially supported by Ministry of Europe and Foreign Affairs, Ministry of Higher Education, Research and Innovation and the French Institute of Rabat (PHC TOUBKAL 2020 (French-Morocco bilateral program) Grant Number: 12345AB).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Moumen or S. Ouaskit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moumen, A., Zougagh, S., Halim, W. et al. Latex/AgNPs: Synthesis, and Their Antibacterial Activity. J Clust Sci 33, 1211–1221 (2022). https://doi.org/10.1007/s10876-021-02050-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02050-3

Keywords

Navigation