Skip to main content
Log in

Manipulation of Plasmon Dephasing Time in Nanostructure Arrays Via the Far-Field Coupling

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

On-demand manipulation of the plasmon dephasing time plays critical roles in many important applications of localized surface plasmon resonance. Here, we systemically investigate the influence of the far-field coupling on plasmon dephasing time in different nanostructure arrays supporting single or multiple modes by for the first time applying the harmonic oscillator analysis model combined with the finite-difference time-domain numerical simulation. The results show that the dephasing time of a bright mode in the nanodisk array can be well on-demand manipulated based on the far-field coupling through varying the individual nanodisk size and array period. In particular, the dephasing time of nanodisk array with adjusting periods exhibits the behavior of first increasing and then decreasing, and it is also modified to different extents under different nanodisk sizes. Furthermore, for the heptamer array supporting multiple modes, we demonstrate that the influence of array period on dephasing time also exists for a bright mode, but a negligible effect appears for dark mode due to the negligible far-field coupling. These findings provide a potential solution to manipulate the dephasing time of plasmonic nanostructure and thereby offer flexible controllability of the ultrafast on-off process of plasmonic switching and photocatalytic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  CAS  PubMed  Google Scholar 

  2. Stockman MI (2011) Nanoplasmonics: past, present, and glimpse into future. Opt Express 19(22):22029–22106

    Article  PubMed  Google Scholar 

  3. Klar T, Perner M, Grosse S, Von Plessen G, Spirkl W, Feldmann J (1998) Surface-plasmon resonances in single metallic nanoparticles. Phys Rev Lett 80(19):4249–4252

    Article  CAS  Google Scholar 

  4. Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson OV, Mulvaney P (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88(7):077402

    Article  PubMed  CAS  Google Scholar 

  5. Wu K, Zhan Y, Wu S, Deng J, Li X (2015) Surface-plasmon enhanced photodetection at communication band based on hot electrons. J Appl Phys 118(6):063101

    Article  CAS  Google Scholar 

  6. Aizin GR, Fateev DV, Tsymbalov GM, Popov VV (2007) Terahertz plasmon photoresponse in a density modulated two-dimensional electron channel of a Ga As∕Al Ga As field-effect transistor. Appl Phys Lett 91(16):163507

    Article  CAS  Google Scholar 

  7. Rodríguez-Fortuño FJ, Martínez-Marco M, Tomás-Navarro B, Ortuño R, Martí J, Martínez A, Rodríguez-Cantó PJ (2011) Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses. Appl Phys Lett 98(13):133118

    Article  CAS  Google Scholar 

  8. West JL, Halas NJ (2003) Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng 5(1):285–292

    Article  CAS  PubMed  Google Scholar 

  9. Ye J, Wen F, Sobhani H, Lassiter JB, Dorpe PV, Nordlander P, Halas NJ (2012) Plasmonic nanoclusters: near field properties of the fano resonance interrogated with sers. Nano Lett 12(3):1660

    Article  CAS  PubMed  Google Scholar 

  10. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453

    Article  CAS  PubMed  Google Scholar 

  11. Omaghali N, Tkachenko V, Andreone A, Abbate G (2014) Optical sensing using dark mode excitation in an asymmetric dimer metamaterial. Sensors 14(1):272–282

    Article  Google Scholar 

  12. Zhang X, Yang J (2019) Ultrafast plasmonic optical switching structures and devices. Frontiers in Physics 7:190

    Article  Google Scholar 

  13. Vanacore GM, Berruto G, Madan I, Pomarico E, Biagioni P, Lamb RJ, McGrouther D, Reinhardt O, Kaminer I, Barwick B, Larocque H, Grillo V, Karimi E, García de Abajo FJ, Larocque H (2019) Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nat Mater 18(6):573–579

    Article  CAS  PubMed  Google Scholar 

  14. Najiminaini M, Vasefi F, Kaminska B, Carson JJ (2012) Nano-hole array structure with improved surface plasmon energy matching characteristics. Appl Phys Lett 100(4):043105

    Article  CAS  Google Scholar 

  15. Yu H, Sun Q, Yang J, Ueno K, Oshikiri T, Kubo A, Matsuo Y, Gong Q, Misawa H (2017) Near-field spectral properties of coupled plasmonic nanoparticle arrays. Opt Express 25(6):6883–6894

    Article  PubMed  Google Scholar 

  16. Li Y, Sun Q, Zu S, Shi X, Liu Y, Hu X, Ueno K, Gong Q, Misawa H (2020) Correlation between near-field enhancement and dephasing time in plasmonic dimers. Phys Rev Lett 124(16):163901

    Article  CAS  PubMed  Google Scholar 

  17. Shibata K, Fujii S, Sun Q, Miura A, Ueno K (2020) Further enhancement of the near-field on Au nanogap dimers using quasi-dark plasmon modes. J Chem Phys 152:104706

    Article  CAS  PubMed  Google Scholar 

  18. Yildiz BC, Bek A, Tasgin ME (2020) Plasmon lifetime enhancement in a bright-dark mode coupled system. Physical Review B 101(3)

  19. Lorek E, Mårsell E, Losquin A, Miranda M, Harth A, Guo C, Svärd R, Arnold CL, L’Huiller A, Mikkelsen A, Mauritsson J (2015) Size and shape dependent few-cycle near-field dynamics of bowtie nanoantennas. Opt Express 23(24):31460–31471

    Article  PubMed  Google Scholar 

  20. Chuntonov L, Haran G (2011) Trimeric plasmonic molecules: the role of symmetry. Nano Lett 11(6):2440–2445

    Article  CAS  PubMed  Google Scholar 

  21. Ueno K, Yang J, Sun Q, Aoyo D, Yu H, Kubo A, Matsuo Y, Oshikiri T, Misawa H (2019) Control of plasmon dephasing time using stacked nanogap gold structures for strong near-field enhancement. Appl Mater Today 14:159–165

    Article  Google Scholar 

  22. Haynes CL, McFarland AD, Zhao L, Van Duyne RP, Schatz GC, Gunnarsson L, Prikulis J, Kasemo B, Käll M (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107(30):7337–7342

    Article  CAS  Google Scholar 

  23. Najiminaini MR, Vasefi F, Kaminska B, Carson JJL (2012) Nano-hole array structure with improved surface plasmon energy matching characteristics. Appl Phys Lett 100(4):39

    Article  CAS  Google Scholar 

  24. Meier M, Wokaun A, Liao PF (1985) Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit. JOSA B 2(6):931–949

    Article  CAS  Google Scholar 

  25. Dahmen C, Schmidt B, von Plessen G (2007) Radiation damping in metal nanoparticle pairs. Nano Lett 7(2):318–322

    Article  CAS  PubMed  Google Scholar 

  26. Lamprecht B, Schider G, Lechner RT, Ditlbacher H, Krenn JR, Leitner A, Aussenegg FR (2000) Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Phys Rev Lett 84(20):4721

    Article  CAS  PubMed  Google Scholar 

  27. Rémi F, Losquin A, Yang J, Mårsell E, Mikkelsen A, Lalanne P (2017) Modal analysis of the ultrafast dynamics of optical nanoresonators. ACS Photonics 4(4):897–904

    Article  CAS  Google Scholar 

  28. Zoric I, ZaCh M, Kasemo B, Langhammer C (2011) Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms. ACS Nano 5(4):2535

    Article  CAS  PubMed  Google Scholar 

  29. Chang YC, Wang SM, Chung HC, Tseng CB, Chang SH (2012) Observation of absorption-dominated bonding dark plasmon mode from metal–insulator–metal nanodisk arrays fabricated by nanospherical-lens lithography. ACS Nano 6(4):3390–3396

    Article  CAS  PubMed  Google Scholar 

  30. Sun Q, Yu H, Ueno K, Kubo A, Matsuo Y, Misawa H (2016) Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy. ACS Nano 10(3):3835–3842

    Article  CAS  PubMed  Google Scholar 

  31. Yang J, Sun Q, Ueno K, Shi X, Oshikiri T, Misawa H, Gong Q (2018) Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes. Nat Commun 9(1):4858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lamprecht B, Krenn JR, Leitner A, Aussenegg FR (1999) Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation. Phys Rev Lett 83(21):4421

    Article  CAS  Google Scholar 

  33. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370

    Article  CAS  Google Scholar 

  34. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, Cheminform 34(16) 668-667

  35. FDTD solutions. http://www.lumerical.com

  36. Mårsell E, Losquin A, Svärd R, Miranda M, Guo C, Harth A, Lorek E, Mauritsson J, Arnold CL, Xu H, L’Huillier A, Mikkelsen A (2015) Nanoscale imaging of local few-femtosecond near-field dynamics within a single plasmonic nanoantenna. Nano Lett 15(10):6601–6608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Qin Y, Ji B, Song X, Lin J (2019) Characterization of ultrafast plasmon dynamics in individual gold bowtie by time-resolved photoemission electron microscopy. Appl Phys B 125(1):3

    Article  CAS  Google Scholar 

  38. Aeschlimann M, Brixner T, Fischer A, Hensen M, Huber B, Kilbane D, Kramer C, Pfeiffer W, Piecuch M, Thielen P (2016) Determination of local optical response functions of nanostructures with increasing complexity by using single and coupled lorentzian oscillator models. Appl Phys B 122(7):199

    Article  CAS  Google Scholar 

  39. Yixiao G, Ning Z, Zhangxing S, Xin G, Limin T (2018) Dark dimer mode excitation and strong coupling with a nanorod dipole. Photonics Research 6(9):887

    Article  Google Scholar 

  40. Xu Y, Qin Y, Ji B, Song X, Lin J (2020) Polarization manipulated femtosecond localized surface plasmon dephasing time in an individual bowtie structure. Opt Express 28(7):9310–9319

    Article  PubMed  Google Scholar 

  41. Quinten M, Leitner A, Krenn JR, Aussenegg FR (1998) Electromagnetic energy transport via linear chains of silver nanoparticles. Opt Lett 23:1331

    Article  CAS  PubMed  Google Scholar 

  42. Grigorchuk, Nicolas I (2012) Radiative damping of surface plasmon resonance in spheroidal metallic nanoparticle embedded in a dielectric medium, J Opt Soc Am B 29(12):3404

  43. Pinchuk AO, Schatz GC (2008) Nanoparticle optical properties: far-and near-field electrodynamic coupling in a chain of silver spherical nanoparticles. Mater Sci Eng, B 149(3):251–258

    Article  CAS  Google Scholar 

  44. Zhao L, Kelly KL, Schatz GC (2003) The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J Phys Chem B 107(30):7343–7350

    Article  CAS  Google Scholar 

  45. Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10(8):3184–3189

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology.

Funding

National Natural Science Foundation of China (NSFC) (91850109, 61775021, 62005022, and 12004052); Project from Depart of Sci and Tech of Jilin Province (20200401052GX); Changchun University of Science and Technology(XQNJJ-2018-02); “111” Project of China (D17017); Project funded by China Postdoctoral Science Foundation (2019M661183).

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in (a) conception and design or analysis and interpretation of the data, (b) drafting the article or revising it critically for important intellectual content, and (c) approval of the final version.

Corresponding author

Correspondence to Jingquan Lin.

Ethics declarations

Informed Consent

Informed consent was obtained from all authors.

Consent to Publish

The authors confirm that there is informed consent to the publication of the data contained in the article. We confirm that this work is original and has not been published elsewhere, nor is it currently under consideration for publication elsewhere.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Qin, Y., Ji, B. et al. Manipulation of Plasmon Dephasing Time in Nanostructure Arrays Via the Far-Field Coupling. Plasmonics 16, 1745–1754 (2021). https://doi.org/10.1007/s11468-021-01436-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01436-3

Keywords

Navigation