Skip to main content
Log in

A Lumped Kinetic Model of M-DSO Process for Fluid Catalytic Cracking Gasoline Hydro-Upgrading

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Selective hydrogenation of fluid catalytic cracking (FCC) gasoline is an effective method to reduce the sulfur and olefin contents in it for clean gasoline. Based on the characteristics of the DSO-M and M-DSO processes for the hydro-upgrading of heavy fraction of FCC gasoline hydro-upgrading and the contribution of different hydrocarbons to the octane number, two five-lump reaction networks for M upgrading stage and DSO hydro-desulfurization stage respectively were constructed. According to the experimental data from a micro-tubular fixed bed reactor for FCC gasoline hydro-upgrading, the kinetic parameters of the 5-lump models for M and DSO stages were worked out respectively by Runge–Kutta algorithm and genetic algorithm. The kinetic analysis demonstrates that M-DSO process is better than DSO-M process. Moreover, verification indicates that the models established have good reliability and extrapolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Lappas, A.A., Valla, J.A., Vasalos, I.A., Kuehler, C., Francis, J., O’Connor, P., and Gudde, N.J., Appl. Catal. A, 2004, vol. 262, pp. 31–41. https://doi.org/10.1016/j.apcata.2003.11.014

    Article  CAS  Google Scholar 

  2. Dong, H.M., Qu, Y., and Sun, L.L., China Pet. Process. Petrochem. Technol., 2012, vol. 43, pp. 27–30. https://doi.org/10.3969/j.issn.1005-2399.2012.11.006

    Article  Google Scholar 

  3. Ghosh, P., Andrews, A.T., Quann, R.J., and Halbert, T.R., Energy Fuels, 2009, vol. 23, pp. 5743–5759. https://doi.org/10.1021/ef900632v

    Article  CAS  Google Scholar 

  4. Yang, Q.J., Pan, D., and Zhang, N.N., Petrochem. Technol. Appl. 2018, vol. 36, pp. 343–346. https://doi.org/10.3969/j.issn.1009-0045.2018.05.016

  5. Wang, B.C., Huo, D.L., Cui, D.Q., Cui, J.W., Liu, Y.L., and Zhang, X.J., Mod. Chem. Ind., 2010, vol. 30, pp. 59–61. https://doi.org/10.16606/j.cnki.issn0253-4320.2010

    Article  CAS  Google Scholar 

  6. Lan, L. and Ju, Y.N., China Pet. Process. Petrochem. Technol., 2010, vol. 41, pp. 53–56. https://doi.org/10.3969/j.issn.1005-2399.2010.11.010

    Article  CAS  Google Scholar 

  7. Ouyang, F.S., Ling, Q., and Yu, Z.K., J. Chem. Eng. Chin. Univ., 2015, vol. 29, pp. 1106–1113. https://doi.org/10.3969/j.issn.1003-9015.2015.00.025

    Article  CAS  Google Scholar 

  8. Weekman, V.W.J. and Nace, D.M., AIChE J., 1970, vol. 16, pp. 397–404. https://doi.org/10.1002/aic.690160316

    Article  CAS  Google Scholar 

  9. Zhu, B.C., Weng H.X., and Zhu Z.B., Catalytic Reaction Engineering, Iueshu, Beijing, 1999. ISBN: 9787800438547

  10. Jiang, H. and Huang, S., Energy Fuels, 2016, vol. 30, pp. 10770–10776. https://doi.org/10.1021/acs.energyfuels.6b02208

    Article  CAS  Google Scholar 

  11. Fusheng, O., Yongqian, W., and Qiao, L., Pet. Sci. Technol., 2016, vol. 34, pp. 335–342. https://doi.org/10.1080/10916466.2015.1132236

    Article  CAS  Google Scholar 

  12. Zong, G., Ning, H., Jiang, H., and Ouyang, F.S., Pet. Sci. Technol., 2010, vol. 28, pp. 1778–1787. https://doi.org/10.1080/10916460903261749

    Article  CAS  Google Scholar 

  13. Ge, J.K., Qiu, Y.H., Wu, C.M., and Pu, G.L., Appl. Res. Comput., 2008, vol. 25, pp. 2911–2916. https://doi.org/10.3969/j.issn.1001-3695.2008.10.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusheng Ouyang.

Ethics declarations

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 3, pp. 359–366 https://doi.org/10.31857/S0028242121030072.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Y., Shen, J. & Ouyang, F. A Lumped Kinetic Model of M-DSO Process for Fluid Catalytic Cracking Gasoline Hydro-Upgrading. Pet. Chem. 61, 465–471 (2021). https://doi.org/10.1134/S0965544121050054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121050054

Keywords:

Navigation