Skip to main content
Log in

Pore-Scale Modeling of Electrokinetics in Geomaterials

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Pore-scale finite-volume continuum models of electrokinetic processes are used to predict the Debye lengths, velocity, and potential profiles for two-dimensional arrays of circles, ellipses and squares with different orientations. The pore-scale continuum model solves the coupled Navier–Stokes, Poisson, and Nernst–Planck equations to characterize the electro-osmotic pressure and streaming potentials developed on the application of an external voltage and pressure difference, respectively. This model is used to predict the macroscale permeabilities of geomaterials via the widely used Carmen–Kozeny equation and through the electrokinetic coupling coefficients. The permeability results for a two-dimensional X-ray tomography-derived sand microstructure are within the same order of magnitude as the experimentally calculated values. The effect of the particle aspect ratio and orientation on the electrokinetic coupling coefficients and subsequently the electrical and hydraulic tortuosity of the porous media has been determined. These calculations suggest a highly tortuous geomaterial can be efficient for applications like decontamination and desalination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data and Code Availability

Data and code will be available from the corresponding author on request.

References

Download references

Acknowledgements

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This project is funded by the Sandia Laboratory-Directed Research and Development (LDRD) program, through the Earth Science Research Foundation and an Academic Alliance with University of Illinois. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Author information

Authors and Affiliations

Authors

Contributions

PP contributed to numerical model development, analysis of results and manuscript writing; KK and NA supervised the research project and edited the manuscript.

Corresponding author

Correspondence to Pikee Priya.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priya, P., Kuhlman, K.L. & Aluru, N.R. Pore-Scale Modeling of Electrokinetics in Geomaterials. Transp Porous Med 137, 651–666 (2021). https://doi.org/10.1007/s11242-021-01581-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01581-7

Keywords

Navigation