Skip to main content
Log in

Strangeness enhancement and flow-like effects in \(e^+e^-\) annihilation at high parton density

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Strangeness enhancement and collective flow are considered signatures of the quark gluon plasma formation. These phenomena have been detected not only in relativistic heavy ion collisions but also in high energy, high multiplicity events of proton–proton and proton–nucleus (“small systems”) scatterings. Indeed, a universal behavior emerges by considering the parton density in the transverse plane as the dynamical quantity to specify the initial condition of the collisions. On the other hand, \(e^+e^-\) annihilation data at LEP and lower energies indicate that there is no strangeness enhancement and no flow-like effect. We show that the parton density in the transverse plane generated in \(e^+e^-\) annihilation at the available energy is too low to expect such effects. The event-by-event multiplicity where strangeness suppression and flow-like phenomenon could show up in \(e^+e^-\) is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The reported data are available in the corresponding quoted publications.]

References

  1. Jaroslav Adam et al., Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions. Nat. Phys. 13, 535–539 (2017)

    Article  Google Scholar 

  2. B.B. Abelev et al., Multiplicity dependence of pion, kaon, proton and lambda Production in p-Pb collisions at \(\sqrt{s_{NN}} = 5.02\) TeV. Phys. Lett. B 728, 25–38 (2014)

    Article  ADS  Google Scholar 

  3. V. Khachatryan et al., Evidence for collectivity in pp collisions at the LHC. Phys. Lett. B 765, 193–220 (2017)

    Article  ADS  Google Scholar 

  4. G. Aad et al., Observation of long-range elliptic azimuthal anisotropies in \(\sqrt{s}=13\) and 2.76 TeV \(pp\) collisions with the ATLAS detector. Phys. Rev. Lett. 116(17), 172301 (2016)

    Article  ADS  Google Scholar 

  5. V. Khachatryan et al., Observation of long-range near-side angular correlations in proton–proton collisions at the LHC. JHEP 09, 091 (2010)

    Article  ADS  Google Scholar 

  6. V. Khachatryan et al., Measurement of long-range near-side two-particle angular correlations in pp collisions at \(\sqrt{s} =\)13 TeV. Phys. Rev. Lett. 116(17), 172302 (2016)

    Article  ADS  Google Scholar 

  7. C. Aidala et al., Creation of quark-gluon plasma droplets with three distinct geometries. Nat. Phys. 15(3), 214–220 (2019)

    Article  Google Scholar 

  8. E.K.G. Sarkisyan, A.N. Mishra, R. Sahoo, A.S. Sakharov, Centrality dependence of midrapidity density from GeV to TeV heavy-ion collisions in the effective-energy universality picture of hadroproduction. Phys. Rev. D 94(1), 011501 (2016)

    Article  ADS  Google Scholar 

  9. C. Loizides, Experimental overview on small collision systems at the LHC. Nucl. Phys. A 956, 200–207 (2016)

    Article  ADS  Google Scholar 

  10. B. Bezverkhny Abelev et al., Multi-strange baryon production at mid-rapidity in Pb–Pb collisions at \(\sqrt{s_{NN}}\) = 2.76 TeV. Phys. Lett. B 728, 216–227 (2014). [Erratum: Phys. Lett.B734,409(2014)]

  11. A. Adare et al., Scaling properties of fractional momentum loss of high-\(p_T\) hadrons in nucleus–nucleus collisions at \(\sqrt{s_{_{NN}}}\) from 62.4 GeV to 2.76 TeV. Phys. Rev. C 93(2), 024911 (2016)

    Article  ADS  Google Scholar 

  12. P. Castorina, H. Satz, Strangeness production in AA and pp collisions. Eur. Phys. J. A 52(7), 200 (2016)

    Article  ADS  Google Scholar 

  13. P. Castorina, S. Plumari, H. Satz, Universal strangeness production in hadronic and nuclear collisions. Int. J. Mod. Phys. E 25(08), 1650058 (2016)

    Article  ADS  Google Scholar 

  14. P. Castorina, S. Plumari, H. Satz, Strangeness production and color deconfinement. Int. J. Mod. Phys. E 26(12), 1750081 (2017)

    Article  ADS  Google Scholar 

  15. P. Castorina, S. Plumari, H. Satz, Addendum to strangeness production and color deconfinement. Int. J. Mod. Phys. E 27, 1891001 (2018)

    Article  ADS  Google Scholar 

  16. G. Aad et al., Observation of associated near-side and away-side long-range correlations in \(\sqrt{s_{NN}}\)=5.02 TeV proton–lead collisions with the ATLAS detector. Phys. Rev. Lett. 110(18), 182302 (2013)

    Article  ADS  Google Scholar 

  17. A. Badea et al., Phys. Rev. Lett. 123, 212002 (2020)

    Article  ADS  Google Scholar 

  18. A. Abdesselam et al., Measurement of two-particle correlation in hadronic \(e^+e^-\) collisions at Belle. arXiv:2008.04187

  19. F. Becattini. An introduction to the statistical hadronization model. In International School on Quark-Gluon Plasma and Heavy Ion Collisions: past, present, future, 1 2009

  20. A. Andronic et al., Nature 561, 321 (2018)

    Article  ADS  Google Scholar 

  21. J. Letessier, J. Rafelski, A. Tounsi, Gluon production, cooling and entropy in nuclear collisions. Phys. Rev. C 50, 406–409 (1994)

    Article  ADS  Google Scholar 

  22. F. Becattini, Nucl. Phys. A 702, 336 (2001)

    Article  ADS  Google Scholar 

  23. H. Satz, Quark Matter and Nuclear Collisions: A Brief History of Strong Interaction Thermodynamics, 5th Berkeley School on Collective Dynamics in High Energy Collisions, LBNL Berkeley/California, May 14–18 (2012)

  24. J. Rafelski, B. Muller. Strangeness Production in the Quark - Gluon Plasma. Phys. Rev. Lett. 48, 1066 (1982). [Erratum: Phys.Rev.Lett. 56, 2334 (1986)]

  25. J. Rafelski, Strangeness production in the quark gluon plasma. Nucl. Phys. A 418, 215C-235C (1984)

    Article  ADS  Google Scholar 

  26. P. Castorina, A. Iorio, D. Lanteri, M. Spousta, H. Satz, Phys. Rev. C 101, 054902 (2020)

    Article  ADS  Google Scholar 

  27. J.D. Bjorken, Lecture Notes in Physics (Springer) 56, 93 (1976)

    Article  ADS  Google Scholar 

  28. P. Castorina, M. Floris, S. Plumari, H. Satz, Universal strangeness production and size fluctuactions in small and large systems. PoS EPS–HEP2017, 158 (2017)

    Google Scholar 

  29. C. Loizides, J. Kamin, D. d’Enterria, Improved Monte Carlo Glauber predictions at present and future nuclear colliders. Phys. Rev. C 97(5), 054910 (2018). [erratum: Phys. Rev.C99,no.1,019901(2019)]

  30. L. McLerran, M. Praszalowicz, B. Schenke, Transverse momentum of protons, pions and kaons in high multiplicity pp and pA collisions: evidence for the color glass condensate? Nucl. Phys. A 916, 210–218 (2013)

    Article  ADS  Google Scholar 

  31. A. Bzdak, B. Schenke, P. Tribedy, R. Venugopalan, Initial state geometry and the role of hydrodynamics in proton–proton, proton–nucleus and deuteron–nucleus collisions. Phys. Rev. C 87(6), 064906 (2013)

    Article  ADS  Google Scholar 

  32. L. McLerran, P. Tribedy, Intrinsic fluctuations of the proton saturation momentum scale in high multiplicity p+p collisions. Nucl. Phys. A 945, 216–225 (2016)

    Article  ADS  Google Scholar 

  33. F. Becattini, Universality of thermal hadron production in p p, p anti-p and e+ e- collisions. In Universality features in multihadron production and the leading effect. Proceedings, 33rd Workshop of the INFN Eloisatron Project, Erice, Italy, October 19-25, 1996, pp. 74–104 (1996)

  34. J. Takahashi, R. Derradi de Souza. Strangeness production in STAR. In 24th Winter Workshop on Nuclear Dynamics (WWND 2008) South Padre Island, Texas, April 5-12, 2008, (2008)

  35. F. Becattini, M. Bleicher, T. Kollegger, T. Schuster, J. Steinheimer, R. Stock, Hadron formation in relativistic nuclear collisions and the QCD phase diagram. Phys. Rev. Lett. 111, 082302 (2013)

    Article  ADS  Google Scholar 

  36. L. Adamczyk et al., Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program. Phys. Rev. C 96(4), 044904 (2017)

    Article  ADS  Google Scholar 

  37. B. Alver et al., Phobos results on charged particle multiplicity and pseudorapidity distributions in Au + Au, Cu + Cu, d + Au, and p + p collisions at ultra-relativistic energies. Phys. Rev. C 83, 024913 (2011)

    Article  ADS  Google Scholar 

  38. F. Becattini, P. Castorina, J. Manninen, H. Satz, Eur. Phys. J. C 56, 493–510 (2008)

    Article  ADS  Google Scholar 

  39. M. Luscher, G. Munster, P. Weisz, How thick are chromoelectric flux tubes? Nucl. Phys. B 180, 1–12 (1981)

    Article  ADS  Google Scholar 

  40. P. Castorina, D. Kharzeev, H. Satz, Thermal hadronization and hawking-unruh radiation in QCD. Eur. Phys. J. C 52, 187–201 (2007)

    Article  ADS  Google Scholar 

  41. G. Bali, K. Schilling, C. Schlichter, Phys. Rev. D 51, 5165 (1995)

    Article  ADS  Google Scholar 

  42. K. Aamodt et al. (ALICE Coll.), Phys. Rev. Lett. 105, 252301 (2010)

  43. J.F. Grosse-Oetringhaus, K. Reygers, Charged-particle multiplicity in proton–proton collisions. J. Phys. G 37, 083001 (2010)

    Article  ADS  Google Scholar 

  44. M. Basile et al., Lettere al Nuovo Cimento 41, 298 (1984)

    Article  Google Scholar 

  45. P. Romatschke, Eur. Phys. J. C 77, 21 (2017)

    Article  ADS  Google Scholar 

  46. L. Nagle et al., Phys. Rev. C 97, 024909 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

P.C is partially supported by Charles University Research Center (UNCE/SCI/013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Castorina.

Additional information

Communicated by Giorgio Torrieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castorina, P., Lanteri, D. & Satz, H. Strangeness enhancement and flow-like effects in \(e^+e^-\) annihilation at high parton density. Eur. Phys. J. A 57, 111 (2021). https://doi.org/10.1140/epja/s10050-021-00393-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00393-z

Navigation