Skip to main content
Log in

The Coarea Formula for Vector Functions on Carnot Groups with Sub-Lorentzian Structure

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We establish the coarea formula as an expression for the measure of a subset of a Carnot group in terms of the sub-Lorentzian measure of the intersections of the subset with the level sets of a vector function. We describe the conditions for the level sets of vector functions to be spacelike and find the metric characteristics of these surfaces. Also, we address a series of relevant questions, in particular, about the uniqueness of the coarea factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karmanova M. B., “Coarea formula for functions on 2-step Carnot groups with sub-Lorentzian structure,” Dokl. Math., vol. 101, 129–131 (2020).

    Article  Google Scholar 

  2. Miklyukov V. M., Klyachin A. A., and Klyachin V. A., Maximal Surfaces in Minkowski Space-Time (2011). http://www.uchimsya.info/maxsurf.pdf

    MATH  Google Scholar 

  3. Nielsen B., “Minimal immersion, Einstein’s equations and Mach’s principle,” J. Geom. Phys., vol. 4, 1–20 (1987).

    Article  MathSciNet  Google Scholar 

  4. Naber G. L., The Geometry of Minkowski Spacetime. An Introduction to the Mathematics of the Special Theory of Relativity, Springer, Berlin (1992) (Appl. Math. Sci.; Vol. 92).

    MATH  Google Scholar 

  5. Berestovskii V. N. and Gichev V. M., “Metrized left-invariant orders on topological groups,” St. Petersburg Math. J., vol. 11, no. 4, 543–565 (2000).

    MathSciNet  MATH  Google Scholar 

  6. Grochowski M., “Reachable sets for the Heisenberg sub-Lorentzian structure on \( 𝕉^{3} \). An estimate for the distance function,” J. Dyn. Control Syst., vol. 12, no. 2, 145–160 (2006).

    Article  MathSciNet  Google Scholar 

  7. Grochowski M., “Properties of reachable sets in the sub-Lorentzian geometry,” J. Geom. Phys., vol. 59, no. 7, 885–900 (2009).

    Article  MathSciNet  Google Scholar 

  8. Grochowski M., “Normal forms and reachable sets for analytic Martinet sub-Lorentzian structures of Hamiltonian type,” J. Dyn. Control Syst., vol. 17, no. 1, 49–75 (2011).

    Article  MathSciNet  Google Scholar 

  9. Grochowski M., “Reachable sets for contact sub-Lorentzian metrics on \( 𝕉^{3} \). Application to control affine systems with the scalar input,” J. Math. Sci., vol. 177, no. 3, 383–394 (2011).

    MathSciNet  MATH  Google Scholar 

  10. Grochowski M., “The structure of reachable sets for affine control systems induced by generalized Martinet sub-Lorentzian metrics,” ESAIM Control Optim. Calc. Var., vol. 18, no. 4, 1150–1177 (2012).

    Article  MathSciNet  Google Scholar 

  11. Grochowski M., “The structure of reachable sets and geometric optimality of singular trajectories for certain affine control systems in \( 𝕉^{3} \). The sub-Lorentzian approach,” J. Dyn. Control Syst., vol. 20, no. 1, 59–89 (2014).

    Article  MathSciNet  Google Scholar 

  12. Grochowski M., “Geodesics in the sub-Lorentzian geometry,” Bull. Polish Acad. Sci. Math., vol. 50, no. 2, 161–178 (2002).

    MathSciNet  MATH  Google Scholar 

  13. Grochowski M., “Remarks on the global sub-Lorentzian geometry,” Anal. Math. Phys., vol. 3, no. 4, 295–309 (2013).

    Article  MathSciNet  Google Scholar 

  14. Korolko A. and Markina I., “Nonholonomic Lorentzian geometry on some H-type groups,” J. Geom. Anal., vol. 19, no. 4, 864–889 (2009).

    Article  MathSciNet  Google Scholar 

  15. Korolko A. and Markina I., “Geodesics on H-type quaternion groups with sub-Lorentzian metric and their physical interpretation,” Complex Anal. Oper. Theory, vol. 4, no. 3, 589–618 (2010).

    Article  MathSciNet  Google Scholar 

  16. Krym V. R. and Petrov N. N., “Equations of motion of a charged particle in a five-dimensional model of the general theory of relativity with a nonholonomic four-dimensional velocity space,” Vestn. St. Petersburg Univ. Math., vol. 40, no. 1, 52–60 (2007).

    Article  MathSciNet  Google Scholar 

  17. Krym V. R. and Petrov N. N., “The curvature tensor and the Einstein equations for a four-dimensional nonholonomic distribution,” Vestn. St. Petersburg Univ. Math., vol. 41, no. 3, 256–265 (2008).

    Article  MathSciNet  Google Scholar 

  18. Craig W. and Weinstein S., “On determinism and well-posedness in multiple time dimensions,” Proc. R. Soc. A., vol. 465, no. 2110, 3023–3046 (2008).

    MathSciNet  MATH  Google Scholar 

  19. Bars I. and Terning J., Extra Dimensions in Space and Time, Springer, New York (2010).

    Book  Google Scholar 

  20. Velev M., “Relativistic mechanics in multiple time dimensions,” Physics Essays, vol. 25, no. 3, 403–438 (2012).

    Article  Google Scholar 

  21. Karmanova M. B., “Space-likeness of classes of level surfaces on Carnot groups and their metric properties,” Dokl. Math., vol. 101, 205–208 (2020).

    Article  Google Scholar 

  22. Folland G. B. and Stein E. M., Hardy Spaces on Homogeneous Groups, Princeton Univ., Princeton (1982).

    MATH  Google Scholar 

  23. Pansu P., “Métriques de Carnot–Carathéodory et quasi-isométries des espaces symétriques de rang un,” Ann. Math., vol. 129, no. 1, 1–60 (1989).

    Article  MathSciNet  Google Scholar 

  24. Vodopyanov S., “Geometry of Carnot–Carathéodory spaces and differentiability of mappings,” in: The Interaction of Analysis and Geometry. Contemporary Mathematics, vol. 424, Amer. Math. Soc., Providence (2007), 247–301 (Contemporary Mathematics; Vol. 424).

  25. Karmanova M. B., “The area of graphs on arbitrary carnot groups with sub-Lorentzian structure,” Sib. Math. J., vol. 61, no. 4, 648–670 (2020).

    Article  MathSciNet  Google Scholar 

  26. Karmanova M. B., “Two-step sub-Lorentzian structures and graph surfaces,” Izv. Math., vol. 84, no. 1, 52–94 (2020).

    Article  MathSciNet  Google Scholar 

  27. Ostrowsky A., “Sur la détermination des bornes inférieures pour une classe des déterminants,” Bull. Sci. Math., vol. 61, 19–32 (1937).

    Google Scholar 

  28. Karmanova M. and Vodopyanov S., “A coarea formula for smooth contact mappings of Carnot–Carathéodory spaces,” Acta Appl. Math., vol. 128, no. 1, 67–111 (2013).

    Article  MathSciNet  Google Scholar 

  29. Vodopyanov S. K. and Ukhlov A. D., “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. I,” Siberian Adv. Math., vol. 14, no. 4, 78–125 (2004).

    MathSciNet  MATH  Google Scholar 

  30. Vodopyanov S. K. and Ukhlov A. D., “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. III,” Siberian Adv. Math., vol. 15, no. 1, 91–125 (2005).

    MathSciNet  Google Scholar 

  31. Basalaev S. G. and Vodopyanov S. K., “Approximate differentiability of mappings of Carnot–Carathéodory spaces,” Eurasian Math. J., vol. 4, no. 2, 10–48 (2013).

    MathSciNet  MATH  Google Scholar 

  32. Gromov M., “Carnot–Carathéodory spaces seen from within,” in: Sub-Riemannian Geometry, Birkhäuser, Basel (1996), 79–318.

  33. Nagel A., Stein E. M., and Wainger S., “Balls and metrics defined by vector fields. I: Basic properties,” Acta Math., vol. 155, 103–147 (1985).

    Article  MathSciNet  Google Scholar 

  34. Karmanova M. and Vodopyanov S., “Geometry of Carnot–Carathéodory spaces, differentiability, coarea and area formulas,” in: Analysis and Mathematical Physics, Birkhäuser, Basel (2009), 233–335.

  35. Postnikov M. M., Lectures in Geometry. Semester V: Lie Groups and Lie Algebras [Russian], Nauka, Moscow (1982).

    MATH  Google Scholar 

Download references

Funding

The author was supported by the Mathematical Center in Akademgorodok (Agreement No. 075–15–2019–1613 with the Ministry of Science and Higher Education of the Russian Federation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Karmanova.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2021, Vol. 62, No. 2, pp. 298–325. https://doi.org/10.33048/smzh.2021.62.205

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmanova, M.B. The Coarea Formula for Vector Functions on Carnot Groups with Sub-Lorentzian Structure. Sib Math J 62, 239–261 (2021). https://doi.org/10.1134/S0037446621020051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446621020051

Keywords

UDC

Navigation