Skip to main content
Log in

A new analytical model for the response of AlGaN/GaN HEMT-based pH sensors

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

pH sensors are monitoring devices with wide applications in biology, chemistry, medicine, and agriculture. To enhance their sensitivity and long-term stability, efficient study of such devices becomes imperative but is impossible without the aid of accurate analytical models. A new analytical model for the pH sensing characteristics of AlGaN/GaN-based high-electron-mobility transistors (HEMTs) is presented herein, as well as theoretical predictions and optimization of the charge sensitivity for ungated AlGaN/GaN HEMT-based pH sensors. The change in the drain current with the changing surface potential due to a variation in the pH of the electrolyte is calculated for devices with different Al mole fractions, AlGaN thicknesses, gate length spacings, and passivation layers. The numerical values for the drain current, threshold voltage, and surface potential obtained by using this new model show good agreement with available experimental results. It is demonstrated that the sensitivity of GaN HEMT-based pH sensors at lower pH values can be improved by applying a SiNx passivation layer to the HEMT. The calculated average root-mean-square error of our model is 0.018, being an order of magnitude lower than other models reported in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sawant, R.M., Hurley, J.P., Salmaso, S., Kale, A., Tolcheva, E., Levchenko, T.S., Torchilin, V.P.: SMART drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjugate Chem. 17(4), 943–949 (2006)

    Article  Google Scholar 

  2. Caló, E., Khutoryanskiy, V.V.: Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 65, 252–267 (2015)

    Article  Google Scholar 

  3. Bousse, L., De Rooij, N.F., Bergveld, P.: Operation of chemically sensitive field-effect sensors as a function of the insulator electrolyte interface. IEEE Trans. Electron Devices ED-30(10), 1263–1270 (1983)

    Article  Google Scholar 

  4. Chiang, J.L., Chen, Y.C., Chou, J.C.: Simulation and experimental study of the pH-sensing property for AlN thin films. Jpn. J. Appl. Phys. 40(10), 5900–5904 (2001)

    Article  Google Scholar 

  5. Mahabadi, S.J., Moghadam, H.A.: Comprehensive study of a 4H–SiC MES–MOSFET. Phys. E Low-Dimens. Syst. Nanostruct. 74, 25–29 (2015)

    Article  Google Scholar 

  6. Moghadam, H.A., Dimitrijev, S., Han, J., Haasmann, D., Aminbeidokhti, A.: Transient-current method for measurement of active near-interface oxide traps in 4H-SiC MOS capacitors and MOSFETs. IEEE Trans. Electron Devices 62(8), 2670–2674 (2015)

    Article  Google Scholar 

  7. Holmes, J., Dutta, M., Koeck, F.A., Benipal, M., Brown, J., Fox, B., Hathwar, R., Johnson, H., Malakoutian, M., Saremi, M., Zaniewski, A.: A 4.5-µm PIN diamond diode for detecting slow neutrons. Nucl. Instrum. Methods Phys. Res. Sect A Accel. Spectrom. Detectors Assoc. Equip. 903, 297–301 (2018)

    Article  Google Scholar 

  8. Saremi, M., Hathwar, R., Dutta, M., Koeck, F.A., Nemanich, R.J., Chowdhury, S., Goodnick, S.M.: Analysis of the reverse I-V characteristics of diamond-based PIN diodes. Appl. Phys. Lett. 111(4), 043507 (2017)

    Article  Google Scholar 

  9. Saremi, M.: Modeling and simulation of the programmable metallization cells (PMCs) and diamond-based power devices. Doctoral Dissertation, Arizona State University, (2017).

  10. Hassan, A., Savaria, Y., Sawan, M.: GaN integration technology, an ideal candidate for high-temperature applications: a review. IEEE Access 6, 78790–78802 (2018)

    Article  Google Scholar 

  11. Alexandru, M., Banu, V., Jordà, X., Montserrat, J., Vellvehi, M., Tournier, D., Millán, J., Godignon, P.: SiC integrated circuit control electronics for high-temperature operation. IEEE Trans. Ind. Electron. 62(5), 3182–3191 (2015)

    Article  Google Scholar 

  12. Gaska, R., Gaevski, M., Jain, R., Deng, J., Islam, M., Simin, G., Shur, M.: Novel AlInN/GaN integrated circuits operating up to 500 C. Solid-State Electron. 113, 22–27 (2015)

    Article  Google Scholar 

  13. Chaniotakis, N., Sofikiti, N.: Novel semiconductor materials for the development of chemical sensors and biosensors: a review. Anal. Chim. Acta 615(1), 1–9 (2008)

    Article  Google Scholar 

  14. Upadhyay, K.T., Chattopadhyay, M.K.: Sensor applications based on AlGaN/GaN heterostructures. Mater. Sci. Eng. B 263, 114849 (2021)

    Article  Google Scholar 

  15. Pearton, S.J., Ren, F., Zhang, A.P., Dang, G., Cao, X.A., Lee, K.P., Cho, H.: GaN electronics for high power, high temperature applications. Mater. Sci. Eng. B 82(1–3), 227–231 (2001)

    Article  Google Scholar 

  16. Dong, Y., Son, D., Dai, Q., Lee, J., Won, C., Kim, J., Kang, S., Lee, J., Chen, D., Lu, H., Zhang, R., Zheng, Y.: AlGaN/GaN heterostructure pH sensor with multi-sensing segments. Sensors Actuators B Chem. 260, 134–139 (2018)

    Article  Google Scholar 

  17. Heinz, D., Huber, F., Spiess, M., Asad, M., Wu, L.Y., Rettig, O.: GaInN quantum wells as optochemical transducers for chemical sensors and biosensors. IEEE J. Sel. Top. Quantum Electron. 23, 15–23 (2017)

    Article  Google Scholar 

  18. Kushagra, A., Pradhan, A.K., Bazal, D.: pH-dependent electrochemomechanical transition of hydrophobe-water interface. IEEE Sensors Lett. 3(7), 1–4 (2019)

    Article  Google Scholar 

  19. Yates, D.E., Levine, S., Healy, T.W.: Site-binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc. Faraday Trans. 1 Phys Chem. Condens. Phases 70, 1807–1818 (1974)

    Google Scholar 

  20. Mönch, W.: Elementary calculation of the branch-point energy in the continuum of interface-induced gap states. Appl. Surf. Sci. 117–118, 380–387 (1997)

    Article  Google Scholar 

  21. Steinhoff, G., Hermann, M., Schaff, W.J., Eastman, L.F., Stutzmann, M., Eickhoff, M.: pH response of GaN surfaces and its application for pH-sensitive field-effect transistors. Appl. Phys. Lett. 83(1), 177–179 (2003)

    Article  Google Scholar 

  22. Schubert, T., Steinhoff, G., Ribbeck, H.-G.V., Stutzmannn, M., Eickhoff, M., Tanaka, M.: Gallium nitride electrodes for membrane-based electrochemical biosensors. Eur. Phys. J. E 30(2), 233–238 (2009)

    Article  Google Scholar 

  23. Cimalla, I.: AlGaN/GaN Sensors for Direct Monitoring of Fluids and Bioreactions. Universitätsverlag Ilmenau, Ilmenau (2011). https://www.db-thueringen.de/receive/dbt_mods_00018484

  24. Abidin, M.S.Z., Hashim, A.M., x Sharifabad, A.M., Rahman, S.F., Sadoh, T.: Open-gated pH sensor fabricated on an undoped-AlGaN/GaN HEMT structure. Sensors 11(3), 77–3067 (2011)

    Article  Google Scholar 

  25. Pyo, J.Y., Jeon, J.H., Koh, Y., Cho, C.Y., Park, H.H., Park, K.H., Lee, S.W., Cho, W.J.: AlGaN/GaN high-electron-mobility transistor pH sensor with extended gate platform. AIP Adv. 8(8), 085106 (2018)

    Article  Google Scholar 

  26. Stutzmann, M., Steinhoff, G., Eickhoff, M., Ambacher, O., Nebel, C.E., Schalwig, J., Neuberger, R., Müller, G.: GaN-based heterostructures for sensor applications. Diamond Relat. Mater. 11(3–6), 886–891 (2002)

    Article  Google Scholar 

  27. Mehandru, R., Luo, B., Kang, B.S., Kim, J.H., Ren, F., Pearton, S.J., Chyi, J.I.: AlGaN/GaN HEMT based liquid sensors. Solid-State Electron. 48(2), 351–353 (2004)

    Article  Google Scholar 

  28. Kokawa, T., Sato, T., Hasegawa, H., Hashizume, T.: Liquid-phase sensors using open-gate AlGaN/GaN high electron mobility transistor structure. J. Vacuum Sci. Technol. B Microelectron. Nanometer. Struct. Process Meas. Phenom. 24(4), 1972–1976 (2006)

    Article  Google Scholar 

  29. Sharma, N., Mishra, S., Singh, K., Chaturvedi, N., Chauhan, A., Periasamy, C., Kharbanda, D.K., Parjapat, P., Khanna, P.K., Nidhi, C.: High-resolution AlGaN/GaN HEMT-based electrochemical sensor for biomedical applications. IEEE Trans. Electron Devices 67(1), 289–295 (2020)

    Article  Google Scholar 

  30. Cheng, Q., Wang, M., Tao, M., Yin, R., Li, Y., Yang, N., Xu, W., Gao, C., Hao, Y., Yang, Z.: Planar dual gate GaN HEMT cascode amplifier as a voltage readout pH sensor with high and tunable sensitivities. IEEE Electron Device Lett. 41(3), 485–488 (2020)

    Article  Google Scholar 

  31. Xuea, D., Zhanga, H., Ahmada, A.U., Lianga, H., Liua, J., Xiaa, X., Guob, W., Huangc, H., Xu, N.: Enhancing the sensitivity of the reference electrode free AlGaN/GaN HEMT based pH sensors by controlling the threshold voltage. Sensors Actuators B. Chem. 306, 127609 (2020)

    Article  Google Scholar 

  32. Zhang, H., Tub, J., Yanga, S., Sheng, K., Wang, P.: Optimization of gate geometry towards high-sensitivity AlGaN/GaN pH sensor. Talanta 205, 120134 (2019)

    Article  Google Scholar 

  33. Chattopadhyay, M.K., Tokekar, S.: Temperature and polarization dependent polynomial based non-linear analytical model for gate capacitance of AlmGa1−mN/GaN MODFET. Solid-State Electron. 50, 2 (2006)

    Article  Google Scholar 

  34. Sadi, T., Frank, S.: A continuous physics-based electro-thermal compact model for the study of non-linearities in III–V HEMTs. In: IEEE European Solid State Device Research Conf; (2010).

  35. Rudolph, M., Fager, C., Root, D.E.: Non-linear Transistor Parameter Extraction Technique. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  36. Koudymov, A., Shur, M.S., Simin, G., Chu, K., Chao, P.C., Lee, C.: Analytical HFET I-V model in presence of current collapse. IEEE Trans Electron Dev. 55(3), 712–720 (2008)

    Article  Google Scholar 

  37. Miao, L., Wang, Y.: 2-D analytical model for current–voltage characteristics and transconductance of AlGaN/GaN MODFETs. IEEE Trans. Electron Dev. 55(1), 261–267 (2008)

    Article  Google Scholar 

  38. Cheng, X., Li, M., Wang, Y.: Physics based compact model for AlGaN/GaN MODFET with closed form I-V and C–V characteristics. IEEE Trans. Electron Dev. 56(12), 288–2887 (2009)

    Article  Google Scholar 

  39. Kola, S., Golio, J.M., Maracas, G.N.: An analytical expression for Fermi Level versus sheet carrier concentration for HEMT modeling. IEEE Electron Dev. Lett. 9, 136–138 (1988)

    Article  Google Scholar 

  40. John, D.L., Allerstam, F., Rodle, T., Murad, S. K., Smit, GDJ.: A surface-potential based model for GaN HEMT in RF power amplifier applications. In: IEEE International Electron Device Meeting (IEDM); (2010).

  41. Khandelwal, S., Fjeldly, T.A.: A physics based compact model of I-V and C–V characteristics in AlGaN/GaN HEMT devices. Solid-State Electron. 76, 60–66 (2012)

    Article  Google Scholar 

  42. Karumuri, N., Turuvekere, S., Gupta, N.D., Gupta, A.D.: A continuous analytical model for 2-DEG charge density in AlGaN/GaN HEMTs valid for all bias voltages. IEEE Trans. Electron Devices 61(7), 2343–2349 (2014)

    Article  Google Scholar 

  43. Swamy, N.S., Dutta, A.K.: Analytical models for the 2DEG density, AlGaN layer carrier density, and drain current for AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 65(3), 936–944 (2018)

    Article  Google Scholar 

  44. Rabbaa, S., Stiens, J.: Validation of a triangular quantum well model for GaN-based HEMTs used in pH and dipole moment sensing. J. Phys. D Appl. Phys. 45(47), 475101 (2012)

    Article  Google Scholar 

  45. Upadhyay, K.T., Chattopadhyay, M.K.: Al composition and AlxInyGazN layer thickness dependent new analytical model for IV characteristics of AlxInyGazN/GaN HEMTs. Mater. Today Proc. 19, 205–208 (2019)

    Article  Google Scholar 

  46. Yigletu, F.M., Khandelwal, S., Fjeldly, T.A., Benjamín, I.: Compact charge-based physical models for current and capacitances in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 60(11), 3746–3752 (2013)

    Article  Google Scholar 

  47. Narang, R., Saxena, M., Gupta, M.: Analytical model of pH sensing characteristics of junctionless silicon on insulator ISFET. IEEE Trans. Electron Devices 64(4), 1742–1750 (2017)

    Article  Google Scholar 

  48. Wu, Y.-F., Keller, S., Kozodoy, P., Keller, B.P., Parikh, P., Kapolnek, D., Denbaars, S.P., Mishra, U.K.: Bias dependent microwave performance of AlGaN/GaN MODFET’s up to 100 V. IEEE Electron Device Lett. 18(6), 290–292 (1997)

    Article  Google Scholar 

  49. Wang, Y.H., Liang, Y.C., Samudra, G.S., Chang, T., Huang, C., Yuan, L., Lo, G.: Modelling temperature dependence on AlGaN/GaN power HEMT device characteristics. Semicond. Sci. Technol. 28(12), 125010 (2013)

    Article  Google Scholar 

  50. Pal, R.: Predictive Modeling of Drug Sensitivity, pp. 83–104. Academic, Cambridge (2016)

    Google Scholar 

  51. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res 30(1), 79–82 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manju K. Chattopadhyay.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, K.T., Chattopadhyay, M.K. A new analytical model for the response of AlGaN/GaN HEMT-based pH sensors. J Comput Electron 20, 1400–1410 (2021). https://doi.org/10.1007/s10825-021-01687-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01687-7

Keywords

Navigation