Skip to main content
Log in

Mechanical Properties and Thermal Conductivity of Epoxy Composites Containing Aluminum-Exfoliated Graphite Nanoplatelets Hybrid Powder

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Epoxy/aluminum-exfoliated graphite nanoplatelet (Al-xGnP) composites were prepared. Prior to the preparation of the composite, two types of Al-xGnP hybrid powder were prepared, one is fully inserted xGnP in aluminum (Al) flake and the other is partially inserted xGnP in Al flake, which were confirmed by TEM images. The thermal conductivities of the epoxy composites increased monotonically with the filler content and the partially and fully inserted epoxy/Al-xGnP composites showed almost 2–3 times higher than those of epoxy/xGnP and epoxy/Al composites. Especially, partially inserted epoxy/Al-xGnP composite showed the highest values of thermal conductivity at the same filler concentration because of the network bridge between Al flakes. The tensile and flexural moduli of the fully inserted epoxy/Al-xGnP showed the highest value in all areas of the filler content because of the good dispersion quality but the tensile and flexural strengths of all epoxy composites decreased with the filler content due to the increase of weak interface between epoxy matrix and the filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ahmadi-Moghadam and F. Taheri, J. Maters. Sci., 49, 6180 (2014).

    Article  CAS  Google Scholar 

  2. K. Kalaitzidou, H. Fukushima, and L. T. Drzal, Compos. Part A: Appl. Sci. Manuf., 38, 1675 (2007).

    Article  Google Scholar 

  3. K. Kalaitzidou, H. Fukushima, H. Miyagawa, and L. T. Drzal, Polym. Eng. Sci., 47, 1796 (2007).

    Article  CAS  Google Scholar 

  4. K. Kalaitzidou, H. Fukushima, and L. T. Drzal, Compos. Sci. Technol., 67, 2045 (2007).

    Article  CAS  Google Scholar 

  5. B. Kalantari, M. R. Mohaddes Mojtahedi, F. Sharif, and R. S. Rahbar, Compos. Part A: Appl. Sci. Manuf., 76, 203 (2015).

    Article  CAS  Google Scholar 

  6. D. Galpaya, M. Wang, M. Liu, N. Motta, E. Waclawik, and C. Yan, Graphene, 1, 30 (2012).

    Article  CAS  Google Scholar 

  7. B. Wetzel, P. Rosso, F. Haupert, and K. Friedrich, Eng. Frac. Mech., 73, 2375 (2006).

    Article  Google Scholar 

  8. H. J. Kim, D. H. Jung, I. H. Jung, J. I. Cifuentes, K. Y. Rhee, and D. Hui, Compos. B Eng., 43, 1743 (2012).

    Article  CAS  Google Scholar 

  9. V. K. Srivastava and A. Verma, Am. J. Mater. Sci., 5, 84 (2015).

    Google Scholar 

  10. N. Jamaludin, P. Anithambigai, S. Shanmugan, and D. Mutharasu, Mater. Sci. Res. India, 11, 35 (2014).

    Article  Google Scholar 

  11. F. I. El-Zahraa, G. T. Abdel-Jaber, M. I. Khashaba, and W. Y. Ali, Mater. Sci. Appl., 6, 200 (2015).

    CAS  Google Scholar 

  12. Y. Jiang, K. Tohgo, and H. Yang, Comput. Mater. Sci., 49, 439 (2010).

    Article  CAS  Google Scholar 

  13. S. A. Bello, J. O. Agunsoye, J. A. Adebisi, and B. H. Suleiman, Acta Period. Technol., 48, 25 (2017).

    Article  CAS  Google Scholar 

  14. S. A. Bello, J. O. Agunsoye, J. A. Adebisi, N. K. Raji, R. G. Adeyemo, A. G. F. Alabi, and S. B. Hassan, Eng. J., 22, 97 (2018).

    Article  CAS  Google Scholar 

  15. L. Yanjie, L. Jiangyin, and C. Yanbin, Carbon Resour. Convers., 3, 29 (2020).

    Article  Google Scholar 

  16. J. A. King, D. R. Klimek, I. Miskioglu, and G. M. Odegard, J. Appl. Polym. Sci., 128, 2417 (2013).

    Article  Google Scholar 

  17. H. Hukushima, L. T. Drzal, B. P. Rook, and M. Rich, J. Therm. Anal. Calorim., 85, 235 (2006).

    Article  Google Scholar 

  18. C. H. Kang, K. H. Yoon, Y. Park, D. Lee, and S. Jeong, Compos Part A: Appl. Sci. Manuf., 41, 919 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Nano-Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2016M3A7B4021149) and by Trade, Industry & Energy (MOTIE, Korea) under Industrial Technology Innovation Program (No.10052838).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwan Han Yoon or Jong Hun Han.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.S., Yoon, K.H., Lee, Y.S. et al. Mechanical Properties and Thermal Conductivity of Epoxy Composites Containing Aluminum-Exfoliated Graphite Nanoplatelets Hybrid Powder. Macromol. Res. 29, 252–256 (2021). https://doi.org/10.1007/s13233-021-9032-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9032-5

Keywords

Navigation