Skip to main content

Advertisement

Log in

A Comparative Analysis of MRI Automated Segmentation of Subcortical Brain Volumes in a Large Dataset of Elderly Subjects

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

In this study, we perform a comparative analysis of automated image segmentation of subcortical structures in the elderly brain. Manual segmentation is very time-consuming and automated methods are gaining importance as a clinical tool for diagnosis. The two most commonly used software libraries for brain segmentation -FreeSurfer and FSL- are put to work in a large dataset of 4,028 magnetic resonance imaging (MRI) scans collected for this study. We find a lack of linear correlation between the segmentation volume estimates obtained from FreeSurfer and FSL. On the other hand, FreeSurfer volume estimates tend to be larger thanFSL estimates of the areas putamen, thalamus, amygdala, caudate, pallidum, hippocampus, and accumbens. The characterization of the performance of brain segmentation algorithms in large datasets as the one presented here is a necessary step towards partially or fully automated end-to-end neuroimaging workflow both in clinical and research settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andravizou, A., Dardiotis, E., Artemiadis, A., Sokratous, M., Siokas, V., Tsouris, Z., Aloizou, A. -M., Nikolaidis, I., Bakirtzis, C., Tsivgoulis, G., & et al. (2019). Brain atrophy in multiple sclerosis: mechanisms, clinical relevance and treatment options. Autoimmunity Highlights, 10(1), 7.

    Article  Google Scholar 

  • Azevedo, C. J., Cen, S. Y., Jaberzadeh, A., Zheng, L., Hauser, S. L., & Pelletier, D. (2019). Contribution of normal aging to brain atrophy in ms. Neurology-Neuroimmunology Neuroinflammation, 6(6), e616.

    Article  Google Scholar 

  • Beyer, M. K., Larsen, J. P., & Aarsland, D. (2007). Gray matter atrophy in parkinson disease with dementia and dementia with lewy bodies. Neurology, 69(8), 747–754.

    Article  Google Scholar 

  • Bug, W. (2005). The impact of the nih public access policy on literature informatics. Neuroinformatics, 3(2), 81–91.

    Article  Google Scholar 

  • Carlson, N. E., Moore, M. M., Dame, A., Howieson, D., Silbert, L. C., Quinn, J. F., & Kaye, J. A. (2008). Trajectories of brain loss in aging and the development of cognitive impairment. Neurology, 70(11), 828–833.

    Article  CAS  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences, 2nd edn. á/l.

  • Collier, D. C., Burnett, S. S., Amin, M., Bilton, S., Brooks, C., Ryan, A., Roniger, D., Tran, D., & Starkschall, G. (2003). Assessment of consistency in contouring of normal-tissue anatomic structures. Journal of Applied Clinical Medical Physics, 4(1), 17–24.

    Article  Google Scholar 

  • Dale, A., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: i. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194.

    Article  CAS  Google Scholar 

  • Dale, A. M., & Sereno, M. I. (1993). Improved localizadon of cortical activity by combining eeg and meg with mri cortical surface reconstruction: a linear approach. Journal of Cognitive Neuroscience, 5(2), 162–176. PMID 23972151.

    Article  CAS  Google Scholar 

  • de Flores, R., Joie, R. L., & Chetelat, G. (2015). Structural imaging of hippocampal subfields in healthy aging and Alzheimer’s disease. Neuroscience, 309, 29–50. Hippocampal vulnerability: from molecules to disease.

    Article  Google Scholar 

  • Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R.L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.

    Article  Google Scholar 

  • Despotović, I., Goossens, B., & Philips, W. (2015). Mri segmentation of the human brain: challenges, methods, and applications. Computational and mathematical methods in medicine.

  • Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53(1), 1–15.

    Article  Google Scholar 

  • Enzinger, C., Fazekas, F., Matthews, P. M., Ropele, S., Schmidt, H., Smith, S., & Schmidt, R. (2005). Risk factors for progression of brain atrophy in aging. Neurology, 64(10), 1704–1711.

    Article  CAS  Google Scholar 

  • Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., Liu, Y., Topol, E., Dean, J., & Socher, R. (2021). Deep learning-enabled medical computer vision. npj Digital Medicine, 4(1), 1–9.

    Article  Google Scholar 

  • Fernández-Blázquez, M. A., Noriega-Ruiz, B., Ávila Villanueva, M., Valentí-Soler, M., Frades-Payo, B., Ser, T. D., & Gómez-Ramírez, J. (2020). Impact of individual and neighborhood dimensions of socioeconomic status on the prevalence of mild cognitive impairment over seven-year follow-up. Aging & Mental Health, 0(0), 1–10. PMID 32067489.

    Google Scholar 

  • Firbank, M. J., Barber, R., Burton, E. J., & O’Brien, J. T. (2008). Validation of a fully automated hippocampal segmentation method on patients with dementia. Human Brain Mapping, 29(12), 1442–1449.

    Article  Google Scholar 

  • Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., & Dale, A. M. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341–355.

    Article  CAS  Google Scholar 

  • Fischl, B., Sereno, M. I., & Dale, A. (1999). Cortical surface-based analysis: Ii: inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2), 195–207.

    Article  CAS  Google Scholar 

  • Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D.H., Busa, E., Seidman, L.J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., & Dale, A.M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.

    Article  Google Scholar 

  • Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., & Walhovd, K. B. (2013). Brain changes in older adults at very low risk for Alzheimer’s disease. Journal of Neuroscience, 33(19), 8237–8242.

    Article  CAS  Google Scholar 

  • Fjell, A. M., Walhovd, K. B., Fennema-Notestine, C., McEvoy, L. K., Hagler, D. J., Holland, D., Brewer, J. B., & Dale, A. M. (2009). One-year brain atrophy evident in healthy aging. Journal of Neuroscience, 29(48), 15223–15231.

    Article  CAS  Google Scholar 

  • Fox, N., Jenkins, R., Leary, S., Stevenson, V., Losseff, N., Crum, W., Harvey, R. J., Rossor, M., Miller, D., & Thompson, A. (2000). Progressive cerebral atrophy in ms: a serial study using registered, volumetric mri. Neurology, 54(4), 807–812.

    Article  CAS  Google Scholar 

  • Fox, N. C., & Freeborough, P. A. (1997). Brain atrophy progression measured from registered serial mri: Validation and application to Alzheimer’s disease. Journal of Magnetic Resonance Imaging, 7(6), 1069–1075.

    Article  CAS  Google Scholar 

  • FreeSurfer cortical reconstruction and parcellation process. (2017). Anatomical processing script: recon-all. https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all, Last accessed on 2020-15-30.

  • FSL. (2017). Anatomical processing script: fsl_anat. https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat, Last accessed on 2020-15-30.

  • Gado, M., Hughes, C. P., Danziger, W., & Chi, D. (1983). Aging, dementia, and brain atrophy: a longitudinal computed tomographic study. American Journal of Neuroradiology, 4(3), 699–702.

    CAS  Google Scholar 

  • Gómez-Ramírez, J., Ávila-Villanueva, M., & Fernández-Blázquez, M.Á. (2020). Selecting the most important self-assessed features for predicting conversion to mild cognitive impairment with random forest and permutation-based methods. Scientific Reports, 10(1), 1–15.

    Article  Google Scholar 

  • Gronenschild, E. H. B. M., Habets, P., Jacobs, H. I. L., Mengelers, R., Rozendaal, N., van Os, J., & Marcelis, M. (2012). The effects of freesurfer version, workstation type, and macintosh operating system version on anatomical volume and cortical thickness measurements. PLOS ONE, 7(6), 1–13.

    Article  Google Scholar 

  • Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. W. L. (2018). Artificial intelligence in radiology. Nature Reviews Cancer, 18(8), 500–510.

    Article  CAS  Google Scholar 

  • Jack Jr, C.R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P. J., Whitwell, J.L., Ward, C., & et al. (2008). The Alzheimer’s disease neuroimaging initiative (adni): Mri methods. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, 27(4), 685–691.

    Article  Google Scholar 

  • Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S.M. (2012). Fsl. NeuroImage, 62(2), 782–790. 20 YEARS OF fMRI.

    Article  Google Scholar 

  • Kecskemeti, S. R., & Alexander, A. L. (2020). Test-retest of automated segmentation with different motion correction strategies: a comparison of prospective versus retrospective methods. NeuroImage, 209, 116494.

    Article  Google Scholar 

  • Klein, A., & Tourville, J. (2012). 101 labeled brain images and a consistent human cortical labeling protocol. Frontiers in Neuroscience, 6, 171.

    Article  Google Scholar 

  • Losseff, N., Wang, L., Lai, H., Yoo, D., Gawne-Cain, M., McDonald, W., Miller, D., & Thompson, A. (1996). Progressive cerebral atrophy in multiple sclerosis a serial mri study. Brain: A Journal of Neurology, 119(6), 2009–2019.

    Article  Google Scholar 

  • Makowski, C., Béland, S., Kostopoulos, P., Bhagwat, N., Devenyi, G.A., Malla, A.K., Joober, R., Lepage, M., & Chakravarty, M.M. (2018). Evaluating accuracy of striatal, pallidal, and thalamic segmentation methods: Comparing automated approaches to manual delineation. NeuroImage, 170, 182–198. Segmenting the Brain.

    Article  Google Scholar 

  • Mazurowski, M. A., Buda, M., Saha, A., & Bashir, M. R. (2019). Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on mri. Journal of Magnetic Resonance Imaging, 49(4), 939–954.

    Article  Google Scholar 

  • Miller, K. L., Alfaro-Almagro, F., Bangerter, N. K., Thomas, D. L., Yacoub, E., Xu, J., Bartsch, A. J., Jbabdi, S., Sotiropoulos, S. N., Andersson, J. L., & et al. (2016). Multimodal population brain imaging in the uk biobank prospective epidemiological study. Nature Neuroscience, 19(11), 1523–1536.

    Article  CAS  Google Scholar 

  • Morey, R. A., Petty, C. M., Xu, Y., Hayes, J. P., Wagner, H. R., Lewis, D. V., LaBar, K. S., Styner, M., & McCarthy, G. (2009). A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. NeuroImage, 45(3), 855–866.

    Article  Google Scholar 

  • Morey, R. A., Selgrade, E. S., Wagner II, H.R., Huettel, S.A., Wang, L., & McCarthy, G. (2010). Scan-rescan reliability of subcortical brain volumes derived from automated segmentation. Human Brain Mapping, 31(11), 1751–1762.

    Google Scholar 

  • O’Brien, J. T., Paling, S., Barber, R., Williams, E. D., Ballard, C., McKeith, I., Gholkar, A., Crum, W. R., Rossor, M. N., & Fox, N. C. (2001). Progressive brain atrophy on serial mri in dementia with lewy bodies, ad, and vascular dementia. Neurology, 56(10), 1386–1388.

    Article  Google Scholar 

  • Patenaude, B., Smith, S. M., Kennedy, D. N., & Jenkinson, M. (2011). A bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage, 56(3), 907–922.

    Article  Google Scholar 

  • Peter, J., Scheef, L., Abdulkadir, A., Boecker, H., Heneka, M., Wagner, M., Koppara, A., Kloppel, S., & Jessen, F. (2014). Gray matter atrophy pattern in elderly with subjective memory impairment. Alzheimer’s and Dementia, 10(1), 99– 108.

    Article  Google Scholar 

  • Pini, L., Pievani, M., Bocchetta, M., Altomare, D., Bosco, P., Cavedo, E., Galluzzi, S., Marizzoni, M., & Frisoni, G. B. (2016). Brain atrophy in Alzheimer’s disease and aging. Ageing Research Reviews, 30, 25–48.

    Article  Google Scholar 

  • Rane, S., Plassard, A., Landman, B. A., Claassen, D. O., & Donahue, M. J. (2017). Comparison of cortical and subcortical measurements in normal older adults across databases and software packages. Journal of Alzheimer’s Disease Reports, 1, 59–70.

    Article  Google Scholar 

  • Reuter, M., & Fischl, B. (2011). Avoiding asymmetry-induced bias in longitudinal image processing. NeuroImage, 57(1), 19–21.

    Article  Google Scholar 

  • Reuter, M., Rosas, H. D., & Fischl, B. (2010). Highly accurate inverse consistent registration: a robust approach. NeuroImage, 53(4), 1181–1196.

    Article  Google Scholar 

  • Seixas, F. L., Débora, S., Saade, C., Conci, A., Souza, A., Tovar, F., & Bramati, I. (2010). Anatomical Brain mri segmentation methods: Volumetric assessment of the hippocampus. IWSSIP 2010–17 Th International conference on systems, signals and image processing; 2010 Jan 17–19.

  • Simpson, M. I. G., Woods, W. P., Prendergast, G., Johnson, S. R., & Green, G. G. R. (2012). Stimulus variability affects the amplitude of the auditory steady-state response. PLOS ONE, 7(4), 1–10.

    Article  Google Scholar 

  • Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155.

    Article  Google Scholar 

  • Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., Bannister, P. R., Luca, M. D., Drobnjak, I., Flitney, D. E., Niazy, R. K., Saunders, J., Vickers, J., Zhang, Y., Stefano, N. D., Brady, J. M., & Matthews, P. M. (2004). Advances in functional and structural mr image analysis and implementation as fsl. NeuroImage, 23, S208 – S219. Mathematics in Brain Imaging.

    Article  Google Scholar 

  • Smith, S. M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P., Federico, A., & Stefano], N. D. (2002). Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. NeuroImage, 17(1), 479–489.

    Article  Google Scholar 

  • Snowdon, D. A. (2003). Healthy aging and dementia: Findings from the nun study. Annals of Internal Medicine, 139(5 Part 2), 450–454.

    Article  Google Scholar 

  • Starmans, M. P., van der Voort, S. R., Tovar, J. M. C., Veenland, J. F., Klein, S., & Niessen, W. J. (2020). Chapter 18 - radiomics: Data mining using quantitative medical image features. In Zhou, S. K., Rueckert, D., & Fichtinger, G. (Eds.) Handbook of medical image computing and computer assisted intervention (pp. 429–456): Academic Press.

  • Thrall, J. H., Li, X., Li, Q., Cruz, C., Do, S., Dreyer, K., & Brink, J. (2018). Artificial intelligence and machine learning in radiology: Opportunities, challenges, pitfalls, and criteria for success. Journal of the American College of Radiology, 15(3 Part B), 504–508. Data Science: Big Data Machine Learning and Artificial Intelligence.

    Article  Google Scholar 

  • Topol, E. (2019). Deep medicine: how artificial intelligence can make healthcare human again. Hachette UK.

  • Vollmer, T., Signorovitch, J., Huynh, L., Galebach, P., Kelley, C., DiBernardo, A., & Sasane, R. (2015). The natural history of brain volume loss among patients with multiple sclerosis: a systematic literature review and meta-analysis. Journal of the Neurological Sciences, 357(1-2), 8–18.

    Article  Google Scholar 

  • Wang, L., Swank, J. S., Glick, I. E., Gado, M. H., Miller, M. I., Morris, J. C., & Csernansky, J. G. (2003). Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging. NeuroImage, 20(2), 667–682.

    Article  CAS  Google Scholar 

  • Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, C., Jenkinson, M., & Smith, S. M. (2009). Bayesian analysis of neuroimaging data in fsl. NeuroImage, 45(1, Supplement 1), S173 – S186. Mathematics in brain imaging.

    Article  Google Scholar 

  • Yan, C., Gong, B., Wei, Y., & Gao, Y. (2020). Deep multi-view enhancement hashing for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence.

  • Yang, H., Xu, H., Li, Q., Jin, Y., Jiang, W., Wang, J., Wu, Y., Li, W., Yang, C., Li, X., & et al. (2019). Study of brain morphology change in Alzheimer’s disease and amnestic mild cognitive impairment compared with normal controls. General Psychiatry, 32(2).

  • Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20 (1), 45–57.

    Article  CAS  Google Scholar 

  • Zhou, C., Guan, X. -J., Guo, T., Zeng, Q. -L., Gao, T., Huang, P. -Y., Xuan, M., Gu, Q. -Q., Xu, X. -J., & Zhang, M. -M. (2020). Progressive brain atrophy in parkinson’s disease patients who convert to mild cognitive impairment. CNS Neuroscience & Therapeutics, 26(1), 117–125.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the generous persons that volunteered to participate in the study and Fundación Reina Sofía for their support. The authors acknowledge funding from Ministerio de Ciencia, Innovación y Universidades (CONNECT-AD) RTI2018-098762-B-C31 and and Structural Funds ERDF (INTERREG V-A Spain-Portugal (POCTEP) Grant: 0348CIE6E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Gomez-Ramirez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Information Sharing Statement

Code and all data used in this research are publicly available on the Github repository under an Apache 2.0 license at https://github.com/grjd/automaticsegmentation. Part of the pre-processing code depends on FSL and FreeSurfer. Both software libraries are only licensed for non-commercial use and are freely available.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez-Ramirez, J., Quilis-Sancho, J. & Fernandez-Blazquez, M.A. A Comparative Analysis of MRI Automated Segmentation of Subcortical Brain Volumes in a Large Dataset of Elderly Subjects. Neuroinform 20, 63–72 (2022). https://doi.org/10.1007/s12021-021-09520-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-021-09520-z

Keywords

Navigation