Skip to main content
Log in

Thermal Transformation of Oxide and Hydroxide Minerals in Chromite and Manganese Ores

  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

Steelmaking industries consume the majority of chromium and manganese ferroalloys to impart several properties in steel and also for other purposes. The quality of ore governs the process kinetics as well as the process economy of the ferroalloy industry. The present study demonstrates the thermal transformation behavior of chromite and manganese ores with varying compositions. Simultaneous thermal analysis (DTA/TG) is employed for such ore samples where the transformation of mineral phases is correlated with the thermogram characteristics and quantified. Phase, microstructure, and compositional analysis results of individual ores corroborated with thermal analysis are in good agreement. Chromite samples are ferruginous with goethite and gibbsite contents, whereas manganese ores vary in composition and also exhibit multiple and/or overlapping transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fruehan RJ (1998) The making, shaping, and treating of steel, 11th edn. AIST, Pittsburgh

    Google Scholar 

  2. Seetharaman S (2013) Treatise on process metallurgy, volume 3: industrial processes. Elsevier, London, UK. https://doi.org/10.1016/C2010-0-67121-5

  3. Gasik M (2013) Handbook of ferroalloys: theory and technology. Elsevier, UK. https://doi.org/10.1016/C2011-0-04204-7

  4. Gao Y, Olivas-Martinez M, Sohn HY, Kim HG, Kim CW (2012) Upgrading of low-grade manganese ore by selective reduction of iron oxide and magnetic separation. Metall Mater Trans B 43:1465–1475. https://doi.org/10.1007/s11663-012-9731-6

    Article  Google Scholar 

  5. Tripathy SK, Banerjee PK, Suresh N (2015) Effect of desliming on the magnetic separation of low-grade ferruginous manganese ore. Int J Miner Metall Mater 22:661–673. https://doi.org/10.1007/s12613-015-1120-0

    Article  Google Scholar 

  6. Rao GV, Mohapatra BK, Tripathy AK (1998) Enrichment of the manganese content by wet high intensity magnetic separation from Chikla manganese ore, India. Magn Electr Sep 9:69–82. https://doi.org/10.1155/1998/45169

    Article  Google Scholar 

  7. Singh V, Ghosh TK, Ramamurthy Y, Tathavadkar V (2011) Beneficiation and agglomeration process to utilize low-grade ferruginous manganese ore fines. Int J Miner Process 99:84–86. https://doi.org/10.1016/j.minpro.2011.03.003

    Article  Google Scholar 

  8. Nurjaman F, Amarela S, Noegroho A et al (2017) Beneficiation of two different low-grade Indonesian manganese ores to improve the Mn/Fe ratio. AIP Conf Proc:1823. https://doi.org/10.1063/1.4978094

  9. Mehdilo A, Irannajad M, Hojjati-Rad MR (2013) Characterization and beneficiation of iranian low-grade manganese ore. Physicochem Probl Miner Process 49:725–741. https://doi.org/10.5277/ppmp130230

    Article  Google Scholar 

  10. Rath SS, Tripathy SK, Rao DS, Biswal SK (2018) Characterization and reduction roasting studies of an iron rich manganese ore. Trans Indian Inst Metals 71:861–872. https://doi.org/10.1007/s12666-017-1218-3

    Article  Google Scholar 

  11. Gao L, Liu Z, Chu M, Wang R, Wang Z, Feng C (2019) Upgrading of low-grade manganese ore based on reduction roasting and magnetic separation technique. Sep Sci Technol (Philadelphia) 54:195–206. https://doi.org/10.1080/01496395.2018.1504795

    Article  Google Scholar 

  12. Liu B, Zhang Y, Wang J, Wang J, Su Z, Li G, Jiang T (2018) New understanding on separation of Mn and Fe from ferruginous manganese ores by the magnetic reduction roasting process. Appl Surf Sci 444:133–144. https://doi.org/10.1016/j.apsusc.2018.02.234

    Article  Google Scholar 

  13. Yi L, Huang Z, Jiang T, Zhao P, Zhong R, Liang Z (2017) Carbothermic reduction of ferruginous manganese ore for Mn/Fe beneficiation: morphology evolution and separation characteristic. Minerals 7. https://doi.org/10.3390/min7090167

  14. Mishra PP, Mohapatra BK, Mahanta K (2009) Upgradation of low-grade siliceous manganese ore from Bonai-Keonjhar Belt, Orissa, India. J Miner Mater Charact Eng 08:47–56. https://doi.org/10.4236/jmmce.2009.81005

    Article  Google Scholar 

  15. Mpho M, Samson B, Ayo A (2013) Evaluation of reduction roasting and magnetic separation for upgrading Mn/Fe ratio of fine ferromanganese. Int J Min Sci Technol 23:537–541. https://doi.org/10.1016/j.ijmst.2013.07.012

    Article  Google Scholar 

  16. El-Geassy AA, Nasr MI, Yousef MA et al (2003) Behaviour of manganese oxides during magnetising reduction of Baharia iron ore by CO–CO 2 gas mixture. Ironmak Steelmak 27:117–122. https://doi.org/10.1179/030192300677417

    Article  Google Scholar 

  17. Liu B, Zhang Y, Lu M, Su Z, Li G, Jiang T (2019) Extraction and separation of manganese and iron from ferruginous manganese ores: a review. Miner Eng 131:286–303. https://doi.org/10.1016/j.mineng.2018.11.016

    Article  Google Scholar 

  18. Kivinen V, Krogerus H, Daavittila J (2010) Upgrading of Mn/Fe ratio of low-grade manganese ore for ferromanganese production. The Twelfth International Ferroalloys Congress Sustainable Future. Helsinki, Finland, pp 467–476. https://pyrometallurgy.co.za/InfaconXII/467-Kivinen.pdf

  19. Tripathy SK, Murthy YR, Singh V (2013) Characterisation and separation studies of Indian chromite beneficiation plant tailing. Int J Miner Process 122:47–53. https://doi.org/10.1016/j.minpro.2013.04.008

    Article  Google Scholar 

  20. Wang Y, Forssberg E (1994) Recovery of hematite and chromite fines and ultrafines by wet magnetic methods. Miner Metall Process 11:87–96. https://doi.org/10.1007/bf03403046

    Article  Google Scholar 

  21. Prasetyo E, Purwaningsih E, Astuti W (2019) Selective-reductive leaching of manganese from low-grade manganese ore using tannic acid as reductant. Min Eng 71:50–51. https://doi.org/10.1007/s42461-019-00115-6

    Article  Google Scholar 

  22. Kanungo SB, Mishra SK, Biswal D (2000) Beneficiation of low-grade, high-phosphorus manganese ores of Andhra Pradesh, India, by wet high-intensity magnetic separation plus jigging or hydrocyclone classification. Miner Metall Process 17:269–275. https://doi.org/10.1007/bf03403245

    Article  Google Scholar 

  23. Altiner M (2020) Roasting of a low-grade goethite ore using horse residue and its beneficiation by magnetic separation. Min Metall Explor 37:1357–1365. https://doi.org/10.1007/s42461-020-00242-5

    Article  Google Scholar 

  24. Swamy YV, Bhoi B, Prakash S, Ray HS (1998) Enrichment of the manganese to iron ratio of ferruginous low-grade manganese ore using solid reductant. Miner Metall Process 15:34–37. https://doi.org/10.1007/bf03403222

    Article  Google Scholar 

  25. Tripathy SK, Rama Murthy Y (2012) Modeling and optimization of spiral concentrator for separation of ultrafine chromite. Powder Technol 221:387–394. https://doi.org/10.1016/j.powtec.2012.01.035

    Article  Google Scholar 

  26. Tripathy SK, Banerjee PK, Suresh N (2015) Magnetic separation studies on ferruginous chromite fine to enhance Cr:Fe ratio. Int J Miner Metall Mater 22:217–224. https://doi.org/10.1007/s12613-015-1064-4

    Article  Google Scholar 

  27. Tripathy SK, Ramamurthy Y, Singh V (2011) Recovery of chromite values from plant tailings by gravity concentration. J Miner Mater Charact Eng 10:13–25. https://doi.org/10.4236/jmmce.2011.101002

    Article  Google Scholar 

  28. Zhuchkov VI, Zayakin OV, Leont’ev LI, Esenzhulov AB, Ostrovskii YI (2008) Main trends in the processing of poor chrome ore raw materials. Russ Metall (Metally) 2008:709–712. https://doi.org/10.1134/S0036029508080132

    Article  Google Scholar 

  29. Kumar CR, Tripathy S, Rao DS (2009) Characterisation and pre-concentration of chromite values from plant tailings using Floatex density separator. J Miner Mater Charact Eng 08:367–378. https://doi.org/10.4236/jmmce.2009.85033

    Article  Google Scholar 

  30. Hariya Y (1958) Studies of mineralogical and geological distribution of some manganese dioxide minerals in Hokkaido, Japan. J Mineral Soc Jpn 3:565–591_2. https://doi.org/10.2465/gkk1952.3.565

    Article  Google Scholar 

  31. Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci 96:3447–3454. https://doi.org/10.1073/pnas.96.7.3447

    Article  Google Scholar 

  32. Földvári M (2011) Handbook of the thermogravimetric system of minerals and its use in geological practice

  33. Mackenzie RC, Berg LG, Berggren G et al (1972) Differential thermal analysis, vol. 2: Applications. Academic Press, Inc., Oxford, England. https://www.abebooks.com/book-search/author/robert-cameron-mackenzie-editor-r-c-mackenzie-l-g-berg-g-berggren-et-al/

  34. Krishna Prasad NS, Patel CC (2013) Differential thermal analysis of synthetic manganese dioxides. J Indian Inst Sci 36A:23–31

    Google Scholar 

  35. Mohapatra BK, Nayak BR, Sahoo RK (1995) Characteristics of nsutite(Gamma-MnO2) in Goriajhar manganese deposit, Gangpur group, India. J Mineral Petrol Econ Geol 90:280–287. https://doi.org/10.2465/ganko.90.280

    Article  Google Scholar 

  36. Malankar H, Umare SS, Singh K, Sharma M (2010) Chemical composition and discharge characteristics of γ-MnO 2 prepared using manganese ore. J Solid State Electrochem 14:71–82. https://doi.org/10.1007/s10008-009-0790-9

    Article  Google Scholar 

  37. Askar M, Abbas H (1994) Chemically activated manganese dioxide for dry batteries. J Power Sources 51:319–330. https://doi.org/10.1016/0378-7753(94)80102-9

    Article  Google Scholar 

  38. Dose WM, Donne SW (2011) Manganese dioxide structural effects on its thermal decomposition. Mater Sci Eng B Solid State Mater Adv Technol 176:1169–1177. https://doi.org/10.1016/j.mseb.2011.06.007

    Article  Google Scholar 

  39. de SH Santos O, de F Carvalho C, da Silva GA, dos Santos CG (2015) Manganese ore tailing: optimization of acid leaching conditions and recovery of soluble manganese. J Environ Manag 147:314–320. https://doi.org/10.1016/j.jenvman.2014.09.020

    Article  Google Scholar 

  40. Novikov GV, Bogdanova OY (2007) Transformations of ore minerals in genetically different oceanic ferromanganese rocks. Lithol Miner Resour 42:303–317. https://doi.org/10.1134/S0024490207040013

    Article  Google Scholar 

  41. Naganna C (1963) Thermal study of some manganese oxide and hydrous oxide minerals. Proc Indian Acad Sci Sect A 58:16–28. https://doi.org/10.1007/BF03049044

    Article  Google Scholar 

  42. Tolymbekova LB, Kim AS, Zhunusov AK, Babenko AA (2013) Thermal transformations in manganese ores in the Zapadnyi Kamys Deposit and in charge materials used to produce pellets in an air flow under nonisothermal conditions. Metallurgist 56:919–924. https://doi.org/10.1007/s11015-013-9675-3

    Article  Google Scholar 

  43. Faria GL, Vianna NCS, Jannotti N, Vieira CB, da Silva A FG (2010) Decrepitation of Brazilian manganese lump ores. The twelfth international ferroalloys congress: sustainable future. Helsinki, Finland, pp 449–456. https://www.pyrometallurgy.co.za/InfaconXII/449-Faria.pdf

  44. Kulp JL, Perfetti JN (1950) Thermal study of some manganese oxide minerals. Mineral Mag J Mineral Soc 29:239–251. https://doi.org/10.1180/minmag.1950.029.210.08

    Article  Google Scholar 

  45. Agrawal RD (1981) Simultaneous TG, DTG and DTA studies on manganese oxides. Trans Jpn Inst Metals 22:253–257. https://doi.org/10.2320/matertrans1960.22.253

    Article  Google Scholar 

  46. Frost RL, Ding Z, Ruan HD (2003) Thermal analysis of goethite: relevance to Australian indigenous art. J Therm Anal Calorim 71:783–797. https://doi.org/10.1023/A:1023365923961

    Article  Google Scholar 

  47. Strezov V, Evans TJ, Zymla V, Strezov L (2011) Structural deterioration of iron ore particles during thermal processing. Int J Miner Process 100:27–32. https://doi.org/10.1016/j.minpro.2011.04.005

    Article  Google Scholar 

  48. Beuria PC, Biswal SK, Mishra BK, Roy GG (2017) Study on kinetics of thermal decomposition of low LOI goethetic hematite iron ore. Int J Min Sci Technol 27:1031–1036. https://doi.org/10.1016/j.ijmst.2017.06.018

    Article  Google Scholar 

  49. Rizov B (2012) Phase transformations from goethite to hematite and thermal decomposition in various nickeliferous laterite ores. J Univ Chem Technol Metallurgy 47:207–210

    Google Scholar 

  50. McCann G, Strezov V, Lucas JA, Evans T, Strezov L (2004) Iron ore characterisation during high temperature thermal processing. Dev Chem Eng Miner Process 12:369–382. https://doi.org/10.1002/apj.5500120412

    Article  Google Scholar 

  51. Walter D, Buxbaum G, Laqua W (2001) The mechanism of the thermal transformation from goethite to hematite*. J Therm Anal Calorim 63:733–748. https://doi.org/10.1023/A:1010187921227

    Article  Google Scholar 

  52. Gialanella S, Girardi F, Ischia G, Lonardelli I, Mattarelli M, Montagna M (2010) On the goethite to hematite phase transformation. J Therm Anal Calorim 102:867–873. https://doi.org/10.1007/s10973-010-0756-2

    Article  Google Scholar 

  53. Takehara L, Vasconcellos MAZ, Hinrichs R, da Cunha JBM, Chemale Jr F (2009) Phase quantification in iron ore. Trans Inst Min Metall Sect C 118:168–174. https://doi.org/10.1179/174328509X431445

    Article  Google Scholar 

  54. Charles M Earnest KG and B Stong (2018) Improved quantification of gibbsite in bauxite ores by thermogravimetric methods (TGA and DTG). Adv Appl Chem Biochem 1: https://doi.org/10.33513/ACBC/1801-02

  55. Kloprogge JT, Ruan HD, Frost RL (2002) Thermal decomposition of bauxite minerals: infrared emission spectroscopy of gibbsite, boehmite and diaspore. J Mater Sci 37:1121–1129. https://doi.org/10.1023/A:1014303119055

    Article  Google Scholar 

  56. Tchakoute HK, Rüscher CH, Djobo JNY, Kenne BBD, Njopwouo D (2015) Influence of gibbsite and quartz in kaolin on the properties of metakaolin-based geopolymer cements. Appl Clay Sci 107:188–194. https://doi.org/10.1016/j.clay.2015.01.023

    Article  Google Scholar 

  57. Grishchenko SG, Krivenko VV, Ovcharuk AN, Olshansky VI, Filippov IY (2015) The comprehensive analysis of physical and chemical properties and metallurgical value of foreign manganese raw materials used during ferroalloy production. The Fourteenth International Ferroalloys Congress: Energy efficiency and environmental friendliness are the future of the global Ferroalloy industry, Kiev, Ukraine, pp 446–453. https://www.pyrometallurgy.co.za/InfaconXIV/446-Grishchenko.pdf

  58. Abdul Azim AA, Kolta GA, Askar MH (1972) Thermal behaviour of some artificial manganese dioxides. Electrochim Acta 17:291–302. https://doi.org/10.1016/0013-4686(72)85031-X

    Article  Google Scholar 

  59. González C, Gutiérrez JI, Gonzalez-Velasco JR et al (1996) Transformations of manganese oxides under different thermal conditions. J Therm Anal 47:93–102. https://doi.org/10.1007/BF01982689

    Article  Google Scholar 

  60. Zhdanov AV, Kaplun LI, Petrova SA, Nurmaganbetova BN, Glinkina KV (2017) Dependence of the thermal transformations in the fines of the chromium ore of the Donskoy Ore Mining and Processing Plant on the addition of silicate and aluminosilicate fluxes. Russ Metall (Metally) 2017:539–546. https://doi.org/10.1134/S0036029517070151

    Article  Google Scholar 

  61. Said MI (2020) Akhtenskite-nsutite phases: polymorphic transformation, thermal behavior and magnetic properties. J Alloys Compd 819:152976. https://doi.org/10.1016/j.jallcom.2019.152976

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Samal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samal, S.K., Mohanty, M.K., Mishra, B. et al. Thermal Transformation of Oxide and Hydroxide Minerals in Chromite and Manganese Ores. Mining, Metallurgy & Exploration 38, 1125–1134 (2021). https://doi.org/10.1007/s42461-021-00382-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-021-00382-2

Keywords

Navigation