Skip to main content
Log in

Investigation on Desulfurization of Rejected Electrolytic Manganese Metal Scrap: Experiment and Mathematical Modeling

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To improve the recycling efficiency of rejected electrolytic manganese metal (EMM) scrap that contains excessive sulfur, a high-temperature experiment and mathematical model reflecting the mechanism of sulfur transfer from the molten manganese metal to the molten slag were elaborated. A MoSi2 electrical resistance furnace filled with argon protective gas was first employed to perform the desulfurization experiment at 1673 K (1400 °C). Four different fluorine slags with the CaO content ranging from 0 to 20 pct were used in the experiment. A mathematical model of the rejected EMM scrap desulfurization, based on the two-film theory, was established. It adequately described the thermodynamics and kinetics of the rejected EMM scrap desulfurization reaction. In particular, it captured the influence of the interfacial tension between the molten slag and molten manganese for the sulfur transfer process. A comparative analysis of measured and calculated results proved the model feasibility: it took into account the effects of the holding temperature, slag CaO content, the initial sulfur content in rejected EMM scrap, and slag/manganese mass ratio on the desulfurization efficiency. The results indicate that CaO could promote the desulfurization of the manganese metal. The sulfur removal ratio is 58.01 pct with a CaO-free slag at 1673 K (1400 °C), while the ratio increases to 84.58 pct if the CaO content rises to 20 pct. At higher temperatures, the CaO content in the slag can be appropriately reduced. High slag/manganese mass ratios were found to benefit the sulfur removal, while the CaO content in the slag could be adjusted according to the initial sulfur content in the rejected EMM scrap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B. Du, Z.G. Pei, and Z.G. Zhi: Journal of Guilin University of Technology, 2015, vol. 35(1), pp. 152-59

    Google Scholar 

  2. Z.Z. Tan: Manganese Metallurgy, Central South University Press, Changsha, 2004 (In Chinese).

    Google Scholar 

  3. J.A.M. de Araujo, M.M.R. de Castro, and V.F.C. Lins: Hydrometallurgy, 2006, vol. 84(3-4), pp. 204-10.

    Article  Google Scholar 

  4. S.Z. Xi: Study on the Mechanism of Electrolytic Manganese Electrode, Chongqing University, Chong QingChong Qing; 2012

    Google Scholar 

  5. P. Wei, O.E. Hileman, M.R. Bateni, X.H. Deng, and A. Petric: Surf. Technol., 2007, vol. 201(18), pp. 7739-45

    Article  CAS  Google Scholar 

  6. D.Y. Luo: Chin. Manganese. Ind. 1992(1), 127-31 (1992)

    Google Scholar 

  7. S. Chatterjee: Critical Evaluation and Thermodynamic Modeling of Phase Equilibria in the Fe-Ca-Mg-Mn-Al-Si-O System. McGill University Libraries, Montreal; 2013.

    Google Scholar 

  8. VV.S. Prasad, A.S. Rao, U. Prakash, V.R. Rao, P.K. Rao, and K.M. Gupt: ISIJ Int., 1996, vol. 36(12), pp. 1459-64.

    Article  CAS  Google Scholar 

  9. T.R. Bandyopadhyay, P.K. Rao, and N. Prabhu: Metall. Min. Ind., 2012, vol. 4(1), pp. 6-16.

    Google Scholar 

  10. A. Kharicha, E. Karimi-Sibaki, M.H. Wu, A. Ludwig, and J. Bohacek: Steel Res. Int., 2018, 89(1), 170

    Article  Google Scholar 

  11. H. Wang, Y.B. Zhong, Q. Li, W.L. Ren, and Z.M. Ren: Metall. Mater. Trans. B, 2017, vol. 48(1), pp. 655-63.

    Article  Google Scholar 

  12. Y. Liu, Z. Zhang, G.Q. Li, Q. Wang, and B.K. Li: High Temp. Mater. Process., 2019, vol. 38(2019), pp. 207-18.

    Article  CAS  Google Scholar 

  13. V. Weber, A. Jardy, B. Dussoubs, S. Ryberon, S. Hans, and H. Poisson: Metall. Mater. Trans. B, 2009, vol. 40(3), pp. 271-80.

    Article  Google Scholar 

  14. Z.H. Jiang: Physical Chemistry and Transmission Phenomena for Electroslag Metallurgy, Northeast University Press, Shenyang, 2000, (In Chinese).

    Google Scholar 

  15. Y.W. Dong, Y.W. Jiang, Y.L. Cao, A. Yu, and D. Hou: Metall. Mater. Trans. B, 2014, vol. 45(4), pp. 1315-24.

    Article  Google Scholar 

  16. Q. Wang, Y. Liu, Z. He, G.Q. Li, and B.K. Li: ISIJ Int., 2017, vol. 57(2), pp. 329-36.

    Article  CAS  Google Scholar 

  17. D. Roy, P.C. Pistorius, and R.J. Fruehan: Metall. Mater. Trans. B, 2013, vol. 44(5), pp. 1086-94.

    Article  Google Scholar 

  18. C.J.B. Fincham and F.D. Richardson: Proc. Math. Phys. Eng. Sci., 1954, vol. 223(1152), pp. 40-62.

    CAS  Google Scholar 

  19. K. Susaki, M. Maeda, and N. Sano: Metall. Trans. B, 1990, vol. 21(1), pp. 121-29.

    Article  CAS  Google Scholar 

  20. I.D. Sommerville and D.J. Sosinsky: Metall. Mater. Trans. B, 1986, vol. 17(2), pp. 331-37.

    Google Scholar 

  21. J.Y. Choi, D.J. Kim, and H.G. Lee: ISIJ Int., 2001, vol. 41(3), pp. 216-24.

    Article  CAS  Google Scholar 

  22. H.X. Yu, X.H. Wang, M. Wang, and W.J. Wang: Int. J. Miner. Metall. Mater., 2014, vol. 21(12), pp. 1160-66.

    Article  CAS  Google Scholar 

  23. B.Y. Shiro, M. Hobo, T. Kaji, I. Takeshi, and H. Mitsutaka: ISIJ Int., 2004, vol. 44(11), pp. 1810-16.

    Article  Google Scholar 

  24. Y. Taniguchi, N. Sano, and S. Seetharaman: ISIJ Int., 2009, 49(2), 156-63.

    Article  CAS  Google Scholar 

  25. C.B. Shi, X.M. Yang, J.S. Jiao, and H.J. Guo: ISIJ Int., 2010, vol. 50(10), pp. 1362-72.

    Article  CAS  Google Scholar 

  26. K. Mills and M.X. Guo: ISIJ Int., 2014, vol. 54(9), pp. 2000-07.

    Article  CAS  Google Scholar 

  27. S. Lee and D.J. Min: J. AM. Ceram. Soc., 2017, vol. 100(6), pp. 2543-52.

    Article  CAS  Google Scholar 

  28. Ren ZS, Hu XJ, Chou KC (2013) J Iron Steel Res Int 20(9):21-25.

    Article  CAS  Google Scholar 

  29. D. Hou, Z.H. Jiang, Y.W. Dong, L. Yang, G. Wei, and F.B. Fu: Metall. Mater. Trans. B, 2017, vol. 48(3), pp. 1885-97.

    Article  Google Scholar 

  30. L.J. Wang and S. Seetharaman: Metall. Mater. Trans. B, 2010, vol. 41(2), pp. 367-73.

    Article  CAS  Google Scholar 

  31. J.Z. Liu and Y. Kobayashi: Metall. Mater. Trans. B, 2017, vol. 48(2), pp. 1108-13.

    Article  Google Scholar 

  32. P.K. Iwamasa and R.J. Fruehan: Metall. Mater. Trans. B, 1997, vol. 28(1), pp. 47-57.

    Article  CAS  Google Scholar 

  33. C. Allertz, M. Selleby, and D. Sichen: Metall. Mater. Trans. B, 2016, vol. 47(5), pp. 3039-45.

    Article  Google Scholar 

  34. D. Hou, D.Y. Wang, Z.H. Jiang, T.P. Qu, and H.H. Wang: J. Sustain. Metall., 2020, vol. 6(3), pp. 463-77.

    Article  Google Scholar 

  35. D. Hou, D.Y. Wang, T.P. Qu, J. Tian, and H.H. Wang: Metall. Mater. Trans. B, 2019, vol. 50(6), pp. 3088-102.

    Article  CAS  Google Scholar 

  36. Q. Wang, Z. He, G.Q. Li, B.K. Li, C.Y. Zhu, and P.J. Chen: Int. J. Heat Mass Transf., 2017, vol. 104, pp. 943-51.

    Article  CAS  Google Scholar 

  37. P. Wu, G. Eriksson, and A.D. Pelton: J. Am. Ceram. Soc., 1993, vol. 76(8), pp. 2065-75.

    Article  CAS  Google Scholar 

  38. Y. Liu, Z. Zhang, G.Q. Li, Y. Wang, D.M. Xu, and B.K. Li: Vacuum, 2018, vol. 158, pp. 6-13.

    Article  CAS  Google Scholar 

  39. C.L. Zhao: Simulation Study of CAS-OB Powder Injection Refining Process, Northeast University, 2006 (In Chinese).

  40. C.Y. Zhu, P.J. Chen, G.Q. Li, X.Y. Luo, and Z. Wan: ISIJ Int., 2016, vol. 56(8), pp. 1368-77.

    Article  CAS  Google Scholar 

  41. G. Tarjus and D. Kivelson: J. Chem. Phys., 1995, vol. 103(8), pp. 3071-73.

    Article  CAS  Google Scholar 

  42. M.V. Smoluchowski: Ann Phys, 1906, vol. 326(14), pp. 756-80.

    Article  Google Scholar 

  43. G.H. Zhang, K.C. Chou, and K. Mills: ISIJ Int., 2012, vol. 52(3), pp. 355-62.

    Article  CAS  Google Scholar 

  44. G.H. Zhang, K.C. Chou, and K. Mills: Metall. Mater. Trans. B, 2014, vol. 45(2), pp. 698-706.

    Article  CAS  Google Scholar 

  45. B.J. Keene: Int. Mater. Rev., 1993, vol. 38(4), pp. 157-92.

    Article  CAS  Google Scholar 

  46. K. Nakashima and K. Mori: ISIJ Int., 1992, vol. 32(1), pp. 11-18.

    Article  CAS  Google Scholar 

  47. A.W. Cramb and I. Jimbo: Steel Res. Int., 1989, vol. 60(3-4), pp. 157-65.

    Article  CAS  Google Scholar 

  48. M. Hanao, T. Tanaka, M. Kawamoto, and K. Takatani: ISIJ Int., 2007, vol. 47(7), pp. 935-39.

    Article  CAS  Google Scholar 

  49. M. Nakamoto, A. Kiyose, T. Tanaka, L. Holappa, and M. Hämäläinen: ISIJ Int., 2007, vol. 47(1), pp. 38-43.

    Article  CAS  Google Scholar 

  50. M.A.T. Andersson, P.G. Jönsson, and M.M. Nzotta: ISIJ Int., 1999, vol. 39(11), pp. 1140-49.

    Article  CAS  Google Scholar 

  51. Z.H. Jiang, D. Hou, Y.W. Dong, Y.L. Cao, H.B. Cao, and W. Gong: Metall. Mater. Trans. B, 2016, vol. 47(2), pp. 1465-74.

    Article  CAS  Google Scholar 

  52. L.N. Belyanchikov: Steel Transl., 2013, vol. 43(11), pp. 698-709.

    Article  Google Scholar 

  53. Z.H. Jiang, Y.W. Dong, X. Geng, and F.B. Liu: Electroslag Metallurgy, Science Press, Beijing, 2015, (In Chinese).

    Google Scholar 

  54. X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, and F. Wang: Metall. Mater. Trans. B, 2011, vol. 42(6), pp. 1150-80.

    Article  CAS  Google Scholar 

  55. X.M. Yang, J.P. Duan, C.B. Shi, M. Zhang, Y.L. Zhang, and J.C. Wang: Metall. Mater. Trans. B, 2011, vol. 42(4), pp. 738-70.

    Article  Google Scholar 

  56. X.M. Yang, C.B. Shi, M. Zhang, J.P. Duan, and J. Zhang: Metall. Mater. Trans. B, 2011, vol. 42(5), pp. 951-77.

    Article  Google Scholar 

  57. X.M. Yang, C.B. Shi, M. Zhang, and J. Zhang: Steel Res. Int., 2012, vol. 83(3), pp. 244-58.

    Article  CAS  Google Scholar 

  58. D. Hou, Z.H. Jiang, Y.W. Dong, Y.L. Cao, H.B. Cao, and W. Gong: Iron Steel, 2016, vol. 43(7), pp. 517-25.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support from the National Natural Science Foundation of China (Grant No. 51804227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 8, 2020, accepted February 15, 2021.

Appendix A: Calculation of Surface Tension of Molten Slag and Molten Manganese

Appendix A: Calculation of Surface Tension of Molten Slag and Molten Manganese

The model takes into account the surface tension effect on the interfacial area during the desulfurization process. As mentioned above, the molten slag and molten manganese interfacial tension strongly influence the interface area. In the present work, the interfacial tension is treated as a function of temperature and is related to the surface tension of the molten slag and molten manganese:[45,46,47,48,49]

$$ \gamma_{\text{ms}} = \gamma_{\text{m}} + \gamma_{\text{s}} + 2 \cdot \phi \cdot \left( {\gamma_{\text{m}} \cdot \gamma_{\text{s}} } \right)^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} $$
(A1)

where \( \gamma_{\text{ms}} \) denotes the interfacial tension between the molten slag and molten manganese; \( \phi \) is the slag system interaction, while \( \gamma_{\text{m}} \) is the surface tension of molten manganese, which is determined by the temperature as follow:

$$ \gamma_{\text{m}} = 1152 - 0.35\left( {T - 1245} \right) $$
(A2)

The molten slag surface tension coefficient \( \gamma_{\text{s}} \) is related to the slag composition and temperature:

$$ \gamma_{\text{s}} = \sum {\gamma_{i} \cdot x_{i} } $$
(A3)
$$ \gamma_{i} = \gamma {}_{i}^{0} + \frac{RT}{{A_{i} }}\ln \frac{{M_{i}^{\text{surf}} }}{{M_{i}^{\text{bulk}} }} $$
(A4)
$$ A_{i} = N_{0}^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0pt} 3}}} \cdot V_{i}^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} $$
(A5)
$$ M_{i}^{\text{surf}} = {{\left( {\frac{{R_{\text{A}} }}{{R_{\text{X}} }} \cdot X_{i}^{\text{surf}} } \right)} \mathord{\left/ {\vphantom {{\left( {\frac{{R_{\text{A}} }}{{R_{\text{X}} }} \cdot X_{i}^{\text{surf}} } \right)} {\left( {\sum {\frac{{R_{\text{A}} }}{{R_{\text{X}} }} \cdot X_{i}^{\text{surf}} } } \right)}}} \right. \kern-0pt} {\left( {\sum {\frac{{R_{\text{A}} }}{{R_{\text{X}} }} \cdot X_{i}^{\text{surf}} } } \right)}} $$
(A6)
$$ M_{i}^{\text{bulk}} = {{\left( {\frac{{R_{\text{A}} }}{{R_{\text{X}} }} \cdot X_{i}^{\text{bulk}} } \right)} \mathord{\left/ {\vphantom {{\left( {\frac{{R_{\text{A}} }}{{R_{\text{X}} }} \cdot X_{i}^{\text{bulk}} } \right)} {\left( {\sum {\frac{{R_{\text{A}} }}{{R_{\text{X}} }} \cdot X_{i}^{\text{bulk}} } } \right)}}} \right. \kern-0pt} {\left( {\sum {\frac{{R_{\text{A}} }}{{R_{\text{X}} }} \cdot X_{i}^{\text{bulk}} } } \right)}} $$
(A7)

where \( \gamma_{i}^{ 0} \) represents the surface tension coefficient of pure CaO, MnO, CaF2, and Al2O3 melts, which are the constituents of the slag and were affected by the temperature as shown in Table AI.[48,49] Superscripts “surf” and “bulk” indicate the surface and bulk, respectively. \( A_{i} \) is the molar surface area in a monolayer of each component; \( N_{0} \) is Avogadro’s number, and \( V_{i} \) is the temperature-dependent molar volume of each component, as displayed in Table AII.[48]\( X_{i}^{\text{surf}} \) is the molar fraction of the components in the surface; \( X_{i}^{\text{bulk}} \) is the molar fraction of the components in bulk; \( R_{\text{A}} \) is the radius of the cation (\( R_{\text{Ca}}^{{ 2 { + }}} \), \( R_{\text{Mn}}^{{ 2 { + }}} \) or \( R_{\text{Al}}^{3 + } \)), and \( R_{\text{X}} \) is the radius of the anion (\( R_{\text{O}}^{2 - } \), or \( R_{\text{F}}^{ - } \)) in slag, as given in Table AIII.[48]

Table AI Surface Tension of Each Slag Component
Table AII Molar Volumes of Pure Components
Table AIII Ion Radii of Various Elements in Angstroms (1 Å = 10−10 m)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, R., Li, G., Gao, Y. et al. Investigation on Desulfurization of Rejected Electrolytic Manganese Metal Scrap: Experiment and Mathematical Modeling. Metall Mater Trans B 52, 1626–1639 (2021). https://doi.org/10.1007/s11663-021-02129-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02129-2

Navigation