Skip to main content
Log in

Factors Controlling the Synthesis of Porous Ti-Based Biomedical Alloys by Electrochemical Deoxidation in Molten Salts

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The study has aimed at understanding the key factors involved in the synthesis of porous Ti-based β-Ti-35Nb-7.9Sn alloy by electro-deoxidation of compacted and sintered TiO2-Nb2O5-SnO2 mixed oxide disks in molten calcium chloride. Processing parameters assessed were the sintering temperature, and thus, the open porosity, of the oxide precursor as well as the temperature, voltage, and time of electro-deoxidation. Process conditions were arrived at that enable the complete and efficient reduction of the mixed oxide. The Ti-35Nb-7.9Sn alloy product was single-phase bcc and had a porous microstructure with nodular particles. Electro-deoxidation experiments of different durations allowed the identification of the main intermediate phases occurring during the reduction as well as the mechanism of the oxide-to-alloy conversion. The porous Ti-35Nb-7.9Sn alloy prepared was subjected to corrosion testing in Hanks’ simulated body fluid solution and was found to exhibit superior performance when compared with dense 304L and 316L steels and brass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. 1. M. Saini, Y. Singh, P. Arora, V. Arora, and K. Jain: World J. Clin. Cases, 2015, vol. 13, pp. 52–57.

    Article  Google Scholar 

  2. 2. Y.H. Li, C. Yang, H.D. Zhao, S.G. Qu, X.Q. Li, and Y.Y. Li: Materials, 2014, vol. 7, pp. 1709–1800.

    Article  Google Scholar 

  3. 3. M. Geetha, D. Durgalakshmi, and R. Asokamani: Rec. Pat. Corros. Sci., 2010, vol. 2, pp. 40–54.

    Article  Google Scholar 

  4. 4. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia: Prog. Mater. Sci., 2009, vol. 54, pp. 397–425.

    Article  CAS  Google Scholar 

  5. 5. M. Niinomi: Sci. Technol. Adv. Mater., 2003, vol. 4, pp. 445–54.

    Article  CAS  Google Scholar 

  6. 6. M. Long and H.J. Rack: Biomater., 1998, vol. 19, pp. 1621–39.

    Article  CAS  Google Scholar 

  7. 7. J.E.G. González and J.C. Mirza-Rosca: J. Electroanal. Chem., 1999, vol. 471, pp. 109–15.

    Article  Google Scholar 

  8. 8. J. Pan, D. Thierry, and C. Leygraf: Electrochim. Acta, 1996, vol. 41, pp. 1143–53.

    Article  CAS  Google Scholar 

  9. 9. A. Cremasco, W.R. Osório, C.M.A. Freire, A. Garcia, and R. Caram: Electrochim. Acta, 2008, vol. 53, pp. 4867–74.

    Article  CAS  Google Scholar 

  10. 10. C.M. Lee, C.P. Ju, and J.H.C. Lin: J. Oral Rehabil., 2002, vol. 29, pp. 314–22.

    Article  CAS  Google Scholar 

  11. 11. S. Guo, Q.K. Meng, X.Q. Zhao, Q.M. Wei, and H.B. Xu: Sci. Rep., 2015, vol. 5, art. no. 14688.

    Article  CAS  Google Scholar 

  12. 12. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro: Mater. Sci. Eng. A, 1998, vol. 243, pp. 244–49.

    Article  Google Scholar 

  13. 13. T. Ozaki, H. Matsumoto, S. Watanabe, and S. Hanada: Mater. Trans., 2004, vol. 45, pp. 2776–79.

    Article  CAS  Google Scholar 

  14. 14. H. Matsumoto, S. Watanabe, and S. Hanada: Mater. Trans., 2005, vol. 46, pp. 1070–78.

    Article  CAS  Google Scholar 

  15. 15. X.F. Cheng, S.C. Liu, C. Chen, W. Chen, M. Liu, R.D. Li, X.Y. Zhang, and K.C. Zhou: J. Mater. Sci.: Mater. Med., 2019, vol. 30, art. no. 91.

    Google Scholar 

  16. Ch. Praveen, S.G. Acharyya, S.M. Shariff, and A. Bhattacharjee: Biomed. Phys. Eng. Express, 2018, vol. 4, art. no. 027003.

  17. 17. S. Bahl, A.S. Krishnamurthy, S. Suwas, and K. Chatterjee: Mater. Des., 2017, vol. 126, pp. 226–37.

    Article  CAS  Google Scholar 

  18. E.P. Utomo, I. Kartika, and A. Anawati: AIP Conf. Proc., 2018, vol. 1964, art. no. 020046.

  19. 19. Y.P. Hou, S. Guo, X.L. Qiao, T. Tian, Q.K. Meng, X.N. Cheng, and X.Q. Zhao: J. Mech. Behav. Biomed. Mater., 2016, vol. 59, pp. 220–25.

    Article  CAS  Google Scholar 

  20. 20. P.E.L. Moraes, R.J. Contieri, E.S.N. Lopes, A. Robin, and R. Caram: Mater. Charact., 2014, vol. 96, pp. 273–81.

    Article  CAS  Google Scholar 

  21. 21. S. Hanada, N. Masahashi, and T.K. Jung: Mater. Sci. Eng. A, 2013, vol. 588, 403–10.

    Article  CAS  Google Scholar 

  22. 22. T.K. Jung, H.S. Lee, S. Semboshi, N. Masahashi, T. Abumiya, and S. Hanada: J. Alloys Compd., 2012, vol. 536S, pp. S582–85.

    Article  Google Scholar 

  23. 23. E.S.N. Lopes, A. Cremasco, R. Contieri, and R. Caram: Adv. Mater. Res., 2011, vol. 324, pp. 61–64.

    Article  CAS  Google Scholar 

  24. 24. J.Y. Xiong, Y.C. Li, X.J. Wang, P. Hodgson, and C. Wen: Acta Biomater., 2008, vol. 4, pp. 1963–68.

    Article  CAS  Google Scholar 

  25. 25. B.L. Wang, Y.F. Zheng, and L.C. Zhao: Mater. Sci. Eng. A, 2008, vol. 486, pp. 146–51.

    Article  Google Scholar 

  26. 26. A. Nouri, J.G. Lin, Y.C. Li, Y. Yamada, P.D. Hodgson, and C.E. Wen: Mater. Forum, 2007, vol. 31, pp. 64–70.

    CAS  Google Scholar 

  27. 27. S. Hanada, H. Matsumoto, and S. Watanabe: Int. Congr. Ser., 2005, vol. 1284, pp. 239–47.

    Article  CAS  Google Scholar 

  28. 28. G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361–64.

    Article  CAS  Google Scholar 

  29. 29. D.J. Fray and C. Schwandt: Mater. Trans., 2017, vol. 58, pp. 306–12.

    Article  CAS  Google Scholar 

  30. 30. J.J. Peng, H.L. Chen, X.B. Jin, T. Wang, D.H. Wang, and G.Z. Chen: Chem. Mater., 2009, vol. 21, pp. 5187–95.

    Article  CAS  Google Scholar 

  31. 31. X. Yang, D.H. Wang, Y.D. Liang, H.Y. Yin, S. Zhang, T. Jiang, Y.N. Wang, and Y. Zhou: J. Biomed. Mater. Res. A, 2014, vol. 102, pp. 2395–407.

    Article  Google Scholar 

  32. 32. T. Yu, H.Y. Yin, Y. Zhou, Y.N. Wang, H. Zhu, and D.H. Wang: Mater. Trans., 2017, vol. 58, pp. 326–30.

    Article  CAS  Google Scholar 

  33. 33. R.O. Suzuki, K. Teranuma, and K. Ono: Metall. Mater. Trans. B, 2003, vol. 34, pp. 287–95.

    Article  CAS  Google Scholar 

  34. 34. R.O. Suzuki: JOM, 2007, vol. 59, pp. 68–71.

    Article  CAS  Google Scholar 

  35. 35. S. Osaki, H. Sakai, and R.O. Suzuki: J. Electrochem. Soc., 2010, vol. 157, pp. E117–21.

    Article  CAS  Google Scholar 

  36. D. Sri Maha Vishnu, J. Sure, Y.J. Liu, R.V. Kumar, and C. Schwandt: Mater. Sci. Eng. C, 2019, vol. 96, pp. 466–78.

    Article  CAS  Google Scholar 

  37. D. Sri Maha Vishnu, J. Sure, R.V. Kumar, and C. Schwandt: Mater. Trans., 2019, vol. 60, pp. 422–28.

    Article  CAS  Google Scholar 

  38. D. Sri Maha Vishnu, N. Sanil, L. Shakila, G. Panneerselvam, R. Sudha, K.S. Mohandas, and K. Nagarajan: Electrochim. Acta, 2013, vol. 100, pp. 51–62.

    Article  CAS  Google Scholar 

  39. ASTM Standard F2129−17: Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements to Determine the Corrosion Susceptibility of Small Implant Devices, ASTM International, West Conshohocken, PA, 2017, pp. 1–9.

  40. 40. J. Miagava, A. Rubbens, P. Roussel, A. Navrotsky, R.H.R. Castro, and D. Gouvêa: J. Am. Ceram. Soc., 2016, vol. 99, pp. 631–37.

    Article  CAS  Google Scholar 

  41. 41. C. Schwandt and D.J. Fray: Electrochim. Acta, 2005, vol. 51, pp. 66–76.

    Article  CAS  Google Scholar 

  42. 42. C. Schwandt and D.J. Fray: Z. Naturforsch. A, 2007, vol. 62, pp. 655–70.

    Article  CAS  Google Scholar 

  43. 43. C. Schwandt, D.T.L. Alexander, and D.J. Fray: Electrochim. Acta, 2009, vol. 54, pp. 3819–29.

    Article  CAS  Google Scholar 

  44. D. Sri Maha Vishnu, J. Sure, and K.S. Mohandas: Carbon, 2015, vol. 93, pp. 782–92.

    Article  CAS  Google Scholar 

  45. 45. M. Maeda and A. McLean: Iron Steelmaker, 1986, vol. 13, pp. 61–65.

    CAS  Google Scholar 

  46. 46. P. Kar and J.W. Evans: Electrochim. Acta, 2008, vol. 54, pp. 835–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partly funded through the Research Chair Grant Programme of The Research Council of the Sultanate of Oman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sri Maha Vishnu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 23, 2020; accepted February 21, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sri Maha Vishnu, D., Sure, J., Vasant Kumar, R. et al. Factors Controlling the Synthesis of Porous Ti-Based Biomedical Alloys by Electrochemical Deoxidation in Molten Salts. Metall Mater Trans B 52, 1590–1602 (2021). https://doi.org/10.1007/s11663-021-02126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02126-5

Navigation