Skip to main content
Log in

Liquid Structure and Thermophysical Properties of Ternary Ni-Fe-Co Alloys Explored by Molecular Dynamics Simulations and Electrostatic Levitation Experiments

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The structure, thermodynamic and dynamic properties of normal and metastable liquid Ni2xFe50−xCo50−x alloys were systematically investigated by combining electrostatic levitation (ESL) experiments and molecular dynamics (MD) simulations. Their composition dependence and mutual interaction were explored in detail. The actual densities of liquid Ni90Fe5Co5, Ni80Fe10Co10, Ni70Fe15Co15 and Ni60Fe20Co20 alloys were measured by ESL experiments in a wide temperature range. The simulated densities of these liquid alloys are in good agreement with the corresponding experimental data. The thermodynamic properties show that all these alloys exhibit a negative excess volume and mixing enthalpy. Meanwhile, their pair distribution functions indicate that Fe and Co atoms easily bond with Ni atoms and have a similar characteristic to each other if compared with Ni atoms. Furthermore, the structure factors validate that there exist icosahedral short-range and medium-range orders of Ni-Ni, Fe-Fe, Fe-Co and Co-Co bonds in these liquid alloys. Additionally, the solute diffusion properties reveal that the correlation between dynamic behavior and alloy composition is determined by the diffusion of Fe and Ni atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Reference

  1. M. Guerdane, F. Wendler, D. Danilov, H. Teichler and B. Nestler, Phys. Rev. B 2010, vol. 81, art. no. 224108.

  2. H. L. Peng, T. Voigtmann, G. Kolland, H. Kobatake and J. Brillo, Phys. Rev. B 2015, vol. 92, art. no. 184201.

  3. H. P. Wang, P. Lü, X. Cai, B. Zhai, J. F. Zhao and B. Wei, Mater. Sci. Eng. A 2020, vol. 772, art. no. 138660.

  4. K. F. Kelton, G. W. Lee, A. K. Gangopadhyay, R. W. Hyers, T. J. Rathz, J. R. Rogers, M. B. Robinson and D. S. Robinson, Phys. Rev. Lett. 2003, vol. 90, art. no. 195504.

  5. H. Cheng, Y. J. Lü and M. Chen, J. Chem. Phys. 2009, vol. 131, art. no. 044502.

  6. 6. J. Lee, J. E. Rodriguez, R. W. Hyers and D. M. Matson, Metall. Mater. Trans. B 2015, vol. 46, pp. 2470-2475.

    Article  Google Scholar 

  7. 7. Paul-François Paradis, Takehiko Ishikawa, Geun-Woo Lee, Dirk Holland-Moritz, Jürgen Brillo, Won-Kyu Rhim and Junpei T. Okada, Materials Science and Engineering: R: Reports 2014, vol. 76, pp. 1-53.

    Article  Google Scholar 

  8. L. Hu, S. J. Yang, L. Wang, W. Zhai and B. Wei, Appl. Phys. Lett. 2017, vol. 110, art. no. 164101.

  9. Zheng Wang, Fan Yang, Andrea Bernasconi, Konrad Samwer and Andreas Meyer, Phys. Rev. B 2018, vol. 98, art. no. 024204.

  10. 10. J. Brillo and I. Egry, Int. J. Thermophys. 2007, vol. 28, pp. 1004-1016.

    Article  CAS  Google Scholar 

  11. 11. J. Brillo, I. Egry and T. Matsushita, Int. J. Thermophys. 2006, vol. 27, pp. 1778-1791.

    Article  CAS  Google Scholar 

  12. Sangho Jeon, Michael P. Sansoucie, Olga Shuleshova, Ivan Kaban and Douglas M. Matson, J. Chem. Phys. 2020, vol. 152, art. no. 094501.

  13. 13. H. P. Wang, C. H. Zheng, P. F. Zou, S. J. Yang, L. Hu and B. Wei, J. Mater. Sci. Technol. 2018, vol. 34, pp. 436-439.

    Article  Google Scholar 

  14. 14. A. K. Rai, H. Trpathy, R. N. Hajra, S. Raju and S. Saroja, J. Alloy. Compd. 2017, vol. 698, pp. 442-450.

    Article  CAS  Google Scholar 

  15. 15. S. A. Uporov, V. A. Bykov and D. A. Yagodin, J. Alloy. Compd. 2014, vol. 589, pp. 420-424.

    Article  CAS  Google Scholar 

  16. 16. R.C. Bradshaw, M.E. Warren, J.R. Rogers, T.J. Rathz, A.K. Gangopadhyay, K.F. Kelton and R.W. Hyers, Ann. N. Y. Acad. Sci. 2006, vol. 1077, pp. 63-74.

    Article  CAS  Google Scholar 

  17. 17. J. Brillo, I. Egry and T. Matsushita, Int. J. Mater. Res. 2006, vol. 97, pp. 1526-1532.

    Article  CAS  Google Scholar 

  18. Paul-Francois Paradis, Takehiko Ishikawa, Yuki Watanabe and Junpei Okada, Adv. Opt. Technol. 2011, vol. 2011, art. no. 454829.

  19. 19. Hidekazu Kobatake and Juergen Brillo, J. Mater. Sci. 2013, vol. 48, pp. 4934-4941.

    Article  CAS  Google Scholar 

  20. 20. Manabu Watanabe, Masayoshi Adachi and Hiroyuki Fukuyama, J. Mater. Sci. 2016, vol. 51, pp. 3303-3310.

    Article  CAS  Google Scholar 

  21. D. Holland-Moritz, S. Stuber, H. Hartmann, T. Unruh, T. Hansen and A. Meyer, Phys. Rev. B 2009, vol. 79, art. no. 064204.

  22. Caroline Desgranges and Jerome Delhornmelle, Phys. Rev. Lett. 2019, vol. 123, art. no. 195701.

  23. G. W. Lee, A. K. Gangopadhyay, K. F. Kelton, R. W. Hyers, T. J. Rathz, J. R. Rogers and D. S. Robinson, Phys. Rev. Lett. 2004, vol. 93, art. no. 037802.

  24. F. Demmel, L. Hennet, S. Brassamin, D. R. Neuville, J. Kozaily and M. M. Koza, Phys. Rev. B 2016, vol. 94, art. no. 014206.

  25. L. Huang, C. Z. Wang and K. M. Ho, Phys. Rev. B 2011, vol. 83, art. no. 184103.

  26. E. Sondermann, N. Jakse, K. Binder, A. Mielke, D. Heuskin, F. Kargl and A. Meyer, Phys. Rev. B 2019, vol. 99, art. no. 024204.

  27. 27. H. Li, G. H. Wang, J. J. Zhao and X. F. Bian, J. Chem. Phys. 2002, vol. 116, pp. 10809-10815.

    Article  CAS  Google Scholar 

  28. N. Jakse and A. Pasturel, Phys. Rev. B 2016, vol. 94, art. no. 224201.

  29. B. Nowak, D. Holland-Moritz, F. Yang, Th Voigtmann, Z. Evenson, T. C. Hansen and A. Meyer, Phys. Rev. B 2017, vol. 96, art. no. 054201.

  30. Joseph R. Vella, Mohan Chen, Frank H. Stillinger, Emily A. Carter, Pablo G. Debenedetti and Athanassios Z. Panagiotopoulos, Phys. Rev. B 2017, vol. 95, art. no. 064202.

  31. 31. S. Sinyova, L. Dreval, R. Starykh and O. Novoghilova, J. Phase Equilibria Diffus. 2019, vol. 40, pp. 583-587.

    Article  CAS  Google Scholar 

  32. H. P. Wang, M. X. Li, P. F. Zou, X. Cai, L. Hu and B. Wei, Phys. Rev. E 2018, vol. 98, art. no. 063106.

  33. 33. P. F. Zou, H. P. Wang, S. J. Yang, L. Hu and B. Wei, Chem. Phys. Lett. 2017, vol. 681, pp. 101-104.

    Article  CAS  Google Scholar 

  34. 34. J. Lee and D. M. Matson, Int. J. Thermophys. 2014, vol. 35, pp. 1697-1704.

    Article  CAS  Google Scholar 

  35. 35. B. J. Lee and M. I. Baskes, Phys. Rev. B 2000, vol. 62, pp. 8564-8567.

    Article  CAS  Google Scholar 

  36. 36. B. J. Lee, W. S. Ko, H. K. Kim and E. H. Kim, Calphad 2010, vol. 34, pp. 510-522.

    Article  CAS  Google Scholar 

  37. E. Asadi, M. A. Zaeem, S. Nouranian and M. I. Baskes, Phys. Rev. B 2015, vol. 91, art. no. 024105.

  38. E. Lee, K. R. Lee, M. I. Baskes and B. J. Lee, Phys. Rev. B 2016, vol. 93, art. no. 144110.

  39. 39. E. Asadi, M. A. Zaeem, S. Nouranian and M. I. Baskes, Acta Mater. 2015, vol. 86, pp. 169-181.

    Article  CAS  Google Scholar 

  40. H. P. Wang, J. F. Zhao, W. Liu and B. Wei, J. Appl. Phys. 2018, vol. 124, art. no. 215107.

  41. 41. Diana Farkas and Alfredo Caro, J. Mater. Res. 2018, vol. 33, pp. 3218-3225.

    Article  CAS  Google Scholar 

  42. 42. S. Plimpton, J. Comput. Phys. 1995, vol. 117, pp. 1-19.

    Article  CAS  Google Scholar 

  43. 43. T. E. Faber and J. M. Ziman, Philos. Mag. 1965, vol. 11, pp. 153-173.

    Article  CAS  Google Scholar 

  44. M. L. Johnson, M. E. Blodgett, K. A. Lokshin, N. A. Mauro, J. Neuefeind, C. Pueblo, D. G. Quirinale, A. J. Vogt, T. Egami, A. I. Goldman and K. F. Kelton, Phys. Rev. B 2016, vol. 93, art. no. 054203.

  45. 45. A. B. Bhatia and D. E. Thornton, Phys. Rev. B 1970, vol. 2, pp. 3004-3012.

    Article  Google Scholar 

  46. 46. P. S. Salmon, R. A. Martin, P. E. Mason and G. J. Cuello, Nature 2005, vol. 435, pp. 75-78.

    Article  CAS  Google Scholar 

  47. P. S. Salmon, A. C. Barnes, R. A. Martin and G. J. Cuello, Phys. Rev. Lett. 2006, vol. 96, art. no. 235502.

  48. 48. J. Brillo and I. Egry, Int. J. Thermophys. 2003, vol. 24, pp. 1155-1170.

    Article  CAS  Google Scholar 

  49. 49. P. F. Zou, H. P. Wang, S. J. Yang, L. Hu and B. Wei, Metall. Mater. Trans. A 2018, vol. 49A, pp. 5488-5496.

    Article  Google Scholar 

  50. 50. J. Brillo, T. Schumacher and K. Kajikawa, Metall. Mater. Trans. A 2019, vol. 50A, pp. 924-935.

    Article  Google Scholar 

  51. F. Soisson and C. C. Fu, Phys. Rev. B 2007, vol. 76, art. no. 214102.

  52. A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B. C. Curley, L. D. Lloyd, G. M. Tarbuck and R. L. Johnston, J. Chem. Phys. 2005, vol. 122, art. no. 194308.

  53. Z. Kuntova, G. Rossi and R. Ferrando, Phys. Rev. B 2008, vol. 77, art. no. 205431.

  54. G. W. Lee, A. K. Gangopadhyay, R. W. Hyers, T. J. Rathz, J. R. Rogers, D. S. Robinson, A. I. Goldman and K. F. Kelton, Phys. Rev. B 2008, vol. 77, art. no. 184102.

  55. Y. Zhang, R. Ashcraft, M. I. Mendelev, C. Z. Wang and K. F. Kelton, J. Chem. Phys. 2016, vol. 145, art. no. 204505.

  56. 56. K. S. Vahvaselkä, Phys. Scr. 1981, vol. 24, pp. 59-64.

    Article  Google Scholar 

  57. 57. Y. Waseda and M. Ohtani, Phys. Status Solidi B 1974, vol. 62, pp. 535-546.

    Article  CAS  Google Scholar 

  58. 58. W. F. Gale and T. C. Totemeier: Smithells Metals Reference Book. 8 ed. Elsevier, Burlington, USA, 2004.

    Google Scholar 

  59. H. Weber, M. Schumacher, P. Jovari, Y. Tsuchiya, W. Skrotzki, R. Mazzarello and I. Kaban, Phys. Rev. B 2017, vol. 96, art. no. 054204.

  60. B. Nowak, D. Holland-Moritz, F. Yang, Th Voigtmann, T. Kordel, T. C. Hansen and A. Meyer, Phys. Rev. Mater. 2017, vol. 1, art. no. 025603.

  61. 61. J. M. Cowley, Phys. Rev. 1950, vol. 77, pp. 669-675.

    Article  CAS  Google Scholar 

  62. N. Jakse and A. Pasturel, Appl. Phys. Lett. 2014, vol. 105, art. no. 131905.

  63. L. Y. Tian, H. Levamaki, M. Kuisma, K. Kokko, A. Nagy and L. Vitos, Phys. Rev. B 2019, vol. 99, art. no. 064202.

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51734008, 52088101), the National Key R&D Program of China (Grant No. 2018YFB2001800) and the Shaanxi Key Industry China Program (Grant No. 2019ZDLGY05-10). We thank Dr. D. L. Geng and Dr. L. Wang for their help with the experiments. Furthermore, we are deeply grateful to Mr. M. X. Li and C. Liang for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 3, 2020; accepted February 1, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J.F., Wang, H.P., Zou, P.F. et al. Liquid Structure and Thermophysical Properties of Ternary Ni-Fe-Co Alloys Explored by Molecular Dynamics Simulations and Electrostatic Levitation Experiments. Metall Mater Trans A 52, 1732–1748 (2021). https://doi.org/10.1007/s11661-021-06185-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06185-w

Navigation