Skip to main content

Advertisement

Log in

Identification of gas hydrate based on velocity cross plot analysis

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

Gas hydrate is regarded as a kind of important energy resource in the recent decades. The identification of gas hydrate is a hot issue for researchers all over the world in order to exploration and exploitation. Previous research shows some methods to identify gas hydrate, but these methods also have shortcomings in different actual conditions. It is still a difficult problem to distinguish gas hydrate accurately from marine sediments. Here we propose a cross plot analysis of velocity to identify gas hydrate. Firstly, we simulate different minerals bearing sediments by rock physics models to obtain different physical properties. After a series of experiments, the results show that there are obvious differences between gas hydrate bearing sediments and other minerals bearing sediments in P-wave and S-wave velocity. Therefore, the cross plot of velocity can be used to distinguish gas hydrate qualitatively. Finally, we verify the cross plot method using the data in the Ocean Drilling Program (ODP) Leg 204 expedition of the Hydrate Ridge along the Oregon continental margin, where gas hydrate is confirmed via logging. The hydrate identification results of actual velocity data by cross plot analysis are generally in keeping with the results of core samples. Moreover, using the cross plot method also can estimate gas hydrate saturation range, which is in accordance with the measurement of chloride (Cl) concentration in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Biot MA (1957) The elastic coefficients of the theory of consolidation. J Appl Mech 24:594–601

    Article  Google Scholar 

  • Biot MA (2004) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33:1482–1498

    Article  Google Scholar 

  • Boswell R, Collett TS (2011) Current perspectives on gas hydrate resources energy. Environ Sci 4:1206–1215. https://doi.org/10.1039/C0EE00203H

    Article  Google Scholar 

  • Chand S, Minshull TA, Gei D, Carcione JM (2004) Elastic velocity models for gas-hydrate-bearing sediments-a comparison. Geophys J Int 159(2):573–590

  • Collett TS, Johnson AH, Knapp CC, Boswell R (2009) Natural gas hydrates—a review browse. Collections 89:146–219

    Google Scholar 

  • Cook AE, Tost BC (2014) Geophysical signatures for low porosity can mimic natural gas hydrate: an example from Alaminos Canyon Gulf of Mexico. J Geophys Res Solid Earth 119:7458–7472. https://doi.org/10.1002/2014jb011342

    Article  Google Scholar 

  • Dvorkin J, Nur A (1996) Elasticity of high-porosity sandstones: theory for two North Sea data sets. Geophysics 61:1363–1370. https://doi.org/10.1190/1.1444059

    Article  Google Scholar 

  • Ecker C, Dvorkin J, Nur A (1998) Sediments with gas hydrates: internal structure from seismic AVO. Geophysics 63:1659–1669

    Article  Google Scholar 

  • Ecker C, Dvorkin J, Nur A (2000) Estimating the amount of gas hydrate and free gas from Marine seismic data. Geophysics 65:565–573

    Article  Google Scholar 

  • Gassmann F (1951) Uber die Elastizitat poroser Medien (Elasticity of porous media). Vierteljahrschrift der Naturforschenden Gesellschaft Zurich 96:1–21

    Google Scholar 

  • Ghosh R, Sain K, Ojha M (2010) Effective medium modeling of gas hydrate-filled fractures using the sonic log in the Krishna-Godavari basin, offshore eastern India. J Geophys Res 115:B06101. https://doi.org/10.1029/2009jb006711

    Article  Google Scholar 

  • Gou LM, Zhang JH, Wang JW (2017) Progress in seismic identification approach of marine gas hydrate. ProgGeophys (Chin) 32(6):2626–2635. https://doi.org/10.6038/pg20170645

    Article  Google Scholar 

  • Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11:127–140

    Article  Google Scholar 

  • Helgerud MB, Dvorkin J, Nur A (1999) Elastic-wave velocity in marine sediments with gas hydrates: effective medium modeling. Geophys Res Lett 26:2021–2024. https://doi.org/10.1029/1999GL900421

    Article  Google Scholar 

  • Hill TR (1952) The elastic behavior of crystalline aggregate. ProcPhysSoc 65:337–347

    Google Scholar 

  • Holland M, Schultheiss P, Roberts J, Druce M (2008) Observed gas hydrate morphologies in marine sediments

  • Hu GW, Ye YG, Zhang J, Liu CL, Diao SB, Wang JS (2010) Acoustic properties of gas hydrate–bearing consolidated sediments and experimental testing of elastic velocity models. J Geophys Res 115:B02102. https://doi.org/10.1029/2008jb006160

    Article  Google Scholar 

  • Jakobsen M, Hudson JA, Minshull TA, Singh SC (2000) Elastic properties of hydrate-bearing sediments using effective medium theory. J Geophys Res Solid Earth 105:561–577

    Article  Google Scholar 

  • Jana S, Sain K, Ojha M et al (2017) An approach to estimate gas hydrate saturation from 3-d heterogeneous resistivity model: a study from krishna-godavari basin, eastern indian offshore. Mar Pet Geol 79:99–107

    Article  Google Scholar 

  • Jitender K, Kalachand S, Arun KP (2019) Seismic attributes for characterizing gas hydrates: a study from the Mahanadi offshore India. Mar Geophy Res 40(1):73–86

    Article  Google Scholar 

  • Kvenvolden KA (1993) Gas hydrates-geological perspective and global change. Rev Geophys 31:173–187. https://doi.org/10.1029/93RG00268

    Article  Google Scholar 

  • Lee MW (2008) Models for gas hydrate-bearing sediments inferred from hydraulic permeability and elastic velocities. US Geol Surv 2008–5219:1–14

    Google Scholar 

  • Lee MW, Collett T (2013) Comparison of elastic velocity models for gas-hydrate-bearing sediments. Natural gas hydrates occurrence, distribution, and detection. American Geophysical Union, Washington, D. C., pp 179–187. https://doi.org/10.1029/GM124p0179

    Chapter  Google Scholar 

  • Lee MW, Waite WF (2008) Estimating pore-space gas hydrate saturations from well log acoustic data. Geochem Geophys Geosyst 9:Q07008. https://doi.org/10.1029/2008gc002081

    Article  Google Scholar 

  • Lei L, Santamarina JC (2019) Physical properties of fine-grained sediments with segregated hydrate lenses. Mar Pet Geol 109:899–911

    Article  Google Scholar 

  • Li CP, Gou LM, You JC et al (2016) Further studies on the numerical simulation of bubble plumes in the cold seepage active region. Acta Oceanol Sin 35(1):118–124. https://doi.org/10.1007/s13131-016-0803-3

    Article  Google Scholar 

  • Liu XW, He J, Sun QL (2009) Gas hydrate identification from ΔVp/ΔVs. In: Beijing International Geophysical Conference & Exposition

  • Liu T, Liu XW, Zhu TY (2019) Joint analysis of P-wave velocity and resistivity for morphology identification and quantification of gas hydrate. Mar Pet Geol 112:104036

    Article  Google Scholar 

  • Madhusudhan BN, Clayton CRI, Priest JA (2019) The effects of hydrate on the strength and stiffness of some sands. J Geophys Res Solid Earth. https://doi.org/10.1029/2018JB015880

    Article  Google Scholar 

  • Mavko G, Mukerji T (1996) Rock physics and relative entropy measures for quantifying the value of additional information in pore fluid indicators Eos. Trans Am Geophys Union 77:735

    Google Scholar 

  • Milkov AV, Claypool GE, Lee YJ (2003) ODP Leg 204 Scientific Party. In situ methane concentrations at hydrate ridge, off shore Oregon: new constraints on the global gas hydrate inventory from an active margin. Geology 31:804–806

    Article  Google Scholar 

  • Mindlin RD (1949) Compliance of elastic bodies in contact. J Appl Mech 16:259–268. https://doi.org/10.1007/978-1-4613-8865-4_24

    Article  Google Scholar 

  • Murphy WFI (1982) Effects of microstructure and pore fluids on the acoustic properties of granular sedimentary materials (Ph. D. thesis). Stanford University

  • Nur A, Mavko G, Dvorkin J, Galmudi D (1998) Critical porosity: a key to relating physical properties to porosity in rocks. Lead Edge 17:357–362

    Article  Google Scholar 

  • Ojha M, Sain K (2013) Quantification of gas hydrate and free gas in the Andaman offshore from downhole data. Curr Sci 105:512–516

    Google Scholar 

  • Pride SR, Berryman JG (2003a) Linear dynamics of double-porosity dual-permeability materials. I. Governing equations and acoustic attenuation. Phy Rev E 68(3):036603

    Article  Google Scholar 

  • Pride SR, Berryman JG (2003b) Linear dynamics of double-porosity dual-permeability materials II Fluid transport equations. Phys Rev E 68(3):036604

    Article  Google Scholar 

  • Shedd W, Boswell R, Frye M, Godfriaux P, Kramer K (2012) Occurrence and nature of “bottom simulating reflectors” in the northern Gulf of Mexico. Mar Pet Geol 34:34–40. https://doi.org/10.1016/j.marpetgeo.2011.08.005

    Article  Google Scholar 

  • Singh SC, Minshull TA (1993) Velocity structure of a gas hydrate reflector. Science 260:204–207

    Article  Google Scholar 

  • Sloan ED Jr (1998) Clathrate hydrates of natural gases. Marcel Dekker, New York, p 705

    Google Scholar 

  • Tian D, Liu X (2020) A new approach for the identification of gas hydrate in marine sediments. Mar Geophys Res 41(3):1–12. https://doi.org/10.1007/s11001-020-09412-y

    Article  Google Scholar 

  • Tréhu AM, Bohrmann G, Rack FR, Torres ME (2003) Proceedings of the ocean drilling program, 204 Initial Report. Texas, Ocean Drilling Program

  • Tréhu AM, Bohrmann G, Rack FR, Torres ME (2003) Proceedings of the ocean drilling program, Initial Report 204IR-104

  • Tréhu AM, Bohrmann G, Rack FR, Torres ME (2003) Proceedings of the ocean drilling program, Initial Report 204IR-106

  • Tréhu AM, Bohrmann G, Rack FR, Torres ME (2003) Proceedings of the ocean drilling program, Initial Report 204IR-109

  • Wang Y, Feng JC, Li XS et al (2016) Evaluation of gas production from Marine hydrate deposits at the GMGS2-site 8, Pearl River Mouth Basin South China Sea. Energies 9(3):222

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the crew and researchers of the Ocean Drilling Program (ODP) Leg 204 expedition. Moreover, we are very grateful for the public data on the Internet, so we can do this research. Our data can be accessed through http://www-odp.tamu.edu/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongmei Tian or Xuewei Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Effective medium theory

The elastic velocities of gas hydrate bearing sediments are given by:

$${\text{V}}_{p} = \sqrt {\frac{{K_{sat} + 4G{}_{sat}/3}}{{\rho_{b} }}} ,$$
(A1)
$${\text{V}}_{S} = \sqrt {\frac{{G_{sat} }}{{\rho_{b} }}} ,$$
(A2)

The density of gas hydrate bearing sediments can be given by:\(\rho_{{\text{b}}} = \left( {1 - \varphi } \right)\sum\nolimits_{i = 1}^{{\text{N}}} {f_{i} } \rho_{i} + \varphi \rho_{w} \left( {1 - S_{h} } \right) + \varphi \rho_{h} S_{h}\), where N represents the number of mineral components; \(f_{i}\) and \(\rho_{i}\) is the volume fraction and density of the ith mineral constituent, respectively; \(\rho_{b}\), \(\rho_{{\text{w}}}\) and \(\rho_{h}\) denote the densities of gas hydrate bearing sediments, water and hydrate, respectively; ɸ is the porosity of sediments. Sh denotes the saturation of hydrate. The modulus of mineral components are given by (Hill 1952):

$${\text{X}} = \frac{1}{2}\left[ {\sum\limits_{i = 1}^{{\text{N}}} {f_{i} X_{i} + \left( {\sum\limits_{i = 1}^{N} {\frac{{f_{i} }}{{X_{i} }}} } \right)^{ - 1} } } \right],$$
(A3)

where X denotes the bulk modulus (K) or shear modulus (G). The bulk and shear modulus of brine-saturated sediments are given by (Gassmann 1951):

$${\text{K}}_{sat} = K\frac{{\varphi K_{dry} - (1 + \varphi )K_{f} K_{dry} /K + K_{f} }}{{(1 - \varphi )/K_{f} + \varphi K - K_{f} K_{dry} /K}},$$
(A4)
$${\text{G}}_{sat} = G_{dry} ,$$
(A5)

The bulk and shear modulus of dry frame are given by (Dvorkin and Nur 1996; Mindlin 1949):

$${\text{K}}_{dry} = \left[ {\frac{{(1 - \varphi )/(1 - \varphi_{c} )}}{{K_{hm} + 4G_{hm} /3}} + \frac{{(\varphi - \varphi_{c} )/\left( {1 - \varphi_{c} } \right)}}{{4G_{hm} /3}}} \right]^{ - 1} - \frac{{4G_{hm} }}{3},$$
(A6)
$${\text{G}}_{dry} = \left[ {\frac{{(1 - \varphi )/(1 - \varphi_{c} )}}{{G_{hm} + Z}} + \frac{{(\varphi - \varphi_{c} )/(1 - \varphi_{c} )}}{Z}} \right]^{ - 1} - Z,$$
(A7)
$${\text{Z}} = \frac{{G_{hm} }}{6}\left[ {\frac{{9K_{hm} + 8G_{hm} }}{{K_{hm} + 2G_{hm} }}} \right],$$
(A8)
$${\text{K}}_{hm} = \left[ {\frac{{m^{2} \left( {1 - \varphi_{c} } \right)^{2} G^{2} P}}{{18\pi^{2} \left( {1 - \nu } \right)^{2} }}} \right]^{\frac{1}{3}} ,$$
(A9)
$${\text{G}}_{hm} = \frac{5 - 4\nu }{{5\left( {2 - \nu } \right)}}\left[ {\frac{{3m^{2} \left( {1 - \varphi_{c} } \right)^{2} G^{2} P}}{{2\pi^{2} \left( {1 - \nu } \right)^{2} }}} \right]^{\frac{1}{3}} ,$$
(A10)

where ɸc represents critical porosity (ɸc = 0.35 ~ 0.4, generally) (we set 0.4) (Nur et al. 1998), and \(\varphi \ge \varphi_{c}\) (the marine sediment porosity is above the critical porosity in our study); m is the contacts’ number per grain (m = 8 ~ 10, generally) (we set 8.5) (Murphy 1982); the effective pressure (P) is given by: \(P = \left( {\rho_{b} - \rho_{w} } \right)gh\); g denotes gravity acceleration; h represents the depth below seafloor; \(\nu = 0.5\left( {K - 2/3G} \right)/\left( {K + 1/3G} \right)\) is the Poisson’s ratio. The gas hydrate is regarded as a part of the rock frame in our study (Lee and Collett 2013), the porosity reduces to \(\varphi_{f} = \varphi \left( {1 - S_{h} } \right)\), the frame volume fraction of gas hydrate (\(f_{h}\)) is \(f_{h} = S_{h} \varphi /\left( {1 - \varphi_{f} } \right)\).

Appendix B

Double porosity model

There are two equations to describe the double porosity model: the governing equations and fluid transport equations (Pride and Berryman 2003a, 2003b). The governing equations describe the propagation of waves in a dual porous medium. And the fluid transport equations describe the attenuation effect of seismic waves. This model is composed of two lithology with different degree of consolidation: consolidation part (solid phase 1) and unconsolidation part (solid phase 2). The P-wave and S-wave velocity are given by:

$$V_{p} = 1/{\text{Re}} \left\{ {S_{B} } \right\},$$
(B1)
$$V_{s} = \sqrt {G/\rho } ,$$
(B2)

where SB denotes the Biot theory’s slowness, which is given by:

$$S_{B}^{2} = b + \sqrt {b^{2} - \frac{{\rho \tilde{\rho } - \rho_{f}^{2} }}{{M_{B} H_{B} - C_{B} }}} ,$$
(B3)
$$b = \frac{{\rho M_{B} + \tilde{\rho }H_{B} - 2\rho_{f} C_{B} }}{{2(M_{B} H_{B} - C_{B}^{2} )}},$$
(B4)

where the MB, HB and CB are the poroelastic modulus of Biot theory (Biot 2004):

$$M_{B} = \frac{{B^{2} }}{{1 - K_{D} /K_{U} }}K_{U} ,$$
(B5)
$$H_{B} = K_{U} + 4G/3,$$
(B6)
$$C_{B} = BK_{U} ,$$
(B7)
$$\tilde{\rho } = - \eta /\left[ {i\omega k\left( \omega \right)} \right],$$
(B8)

where B is the effective coefficient of Skempton, KD is the effective bulk modulus of drained rock frame, KU is the effective bulk modulus.

$$\frac{1}{{K_{D} }} = a_{11} - \frac{{a_{13}^{2} }}{{a_{33} - \gamma /i\omega }},$$
(B9)
$$B = \frac{{ - a_{12} (a_{33} - \gamma /i\omega ) + a_{13} (a_{23} + \gamma /i\omega )}}{{(a_{22} - \gamma /i\omega )(a_{33} - \gamma /i\omega ) - (a_{23} + \gamma /i\omega )^{2} }},$$
(B10)
$$\frac{1}{{K_{U} }} = \frac{1}{{K_{D} }} + B\left( {a_{12} - \frac{{a_{13} (a_{23} + \gamma /i\omega )}}{{a_{33} - \gamma /i\omega }}} \right),$$
(B11)

where \(a_{ij}\) is real and corresponds to high frequency responses, and does not change with changes in internal fluid pressure (Pride and Berryman 2003a).

$$a_{11} = 1/K,$$
(B12)
$$a_{22} = \frac{{v_{1} \alpha_{1} }}{{K_{1}^{d} }}\left( {\frac{1}{{B_{1} }} - \frac{{\alpha_{1} \left( {1 - Q_{1} } \right)}}{{1 - K_{1}^{d} /K_{2}^{d} }}} \right),$$
(B13)
$$a_{33} = \frac{{v_{2} \alpha_{2} }}{{K_{2}^{d} }}\left( {\frac{1}{{B_{2} }} - \frac{{\alpha_{2} \left( {1 - Q_{2} } \right)}}{{1 - K_{2}^{d} /K_{1}^{d} }}} \right),$$
(B14)
$$a_{12} = - v_{1} Q_{1} \alpha_{1} /K_{1}^{d} ,$$
(B15)
$$a_{13} = - v_{2} Q_{2} \alpha_{2} /K_{2}^{d} ,$$
(B16)
$$a_{23} = - \frac{{\alpha_{1} \alpha_{2} K_{1}^{d} /K_{2}^{d} }}{{(1 - K_{1}^{d} /K_{2}^{d} )}}\left( {\frac{1}{K} - \frac{{v_{1} }}{{K_{1}^{d} }} - \frac{{v_{2} }}{{K_{2}^{d} }}} \right),$$
(B17)
$$\alpha_{i} = (1 - K_{i}^{d} /K_{i}^{u} )/B_{i} ,$$
(B18)
$$K_{i}^{u} = K_{i}^{d} /(1 - B_{i} (1 - K_{i}^{d} /K_{i}^{s} )),$$
(B19)

where \(\alpha_{i}\) is the Biot (1957) parameter of solid phase i, \(K_{i}^{u}\) is the non-draining bulk modulus, Qi is auxiliary constant (the solid phases i = 1,2), which can be given by:

$$v_{1} Q_{1} = \frac{{1 - K_{2}^{d} /K}}{{1 - K_{2}^{d} /K_{1}^{d} }},$$
(B20)
$$v_{2} Q_{2} = \frac{{1 - K_{1}^{d} /K}}{{1 - K_{1}^{d} /K_{2}^{d} }},$$
(B21)

where v1 and v2 are the volume fractions of the solid phases. In our study, v2 = Sh, v1 = 1−Sh, Sh is the hydrate saturation. The K and G are respectively the total frequency bulk and shear modulus, given by Hashin and Shtrikman (1963).

$$\frac{1}{{K + 4G_{i} /3}} = \frac{{v_{1} }}{{K_{1}^{d} + 4G_{i} /3}} + \frac{{v_{2} }}{{K_{2}^{d} + 4G_{i} /3}},$$
(B22)
$$\frac{1}{{G + \varsigma_{i} }} = \frac{{v_{1} }}{{G_{1} + \varsigma_{i} }} + \frac{{v_{2} }}{{G_{2} + \varsigma_{i} }},$$
(B23)
$$\varsigma {}_{i} = \frac{{G_{i} (9K_{i}^{d} + 8G_{i} )}}{{6(K_{i}^{d} + 2G_{i} )}},$$
(B24)

Naturally, we define solid phase 2 to be less consolidated than solid phase 1, that is to say, K2d < K1d and G2 < G1.

For consolidation part (solid phase 1):

$$K_{1}^{d} = K_{1}^{s} \frac{{1 - \varphi_{1} }}{{1 + c\varphi_{1} }},$$
(B25)
$$G_{1} = G_{1}^{s} \frac{{1 - \varphi_{1} }}{{1 + 3c\varphi_{1} /2}},$$
(B26)

where c is the degree of consolidation between the particles (c = 10). \(K_{1}^{s}\) and \(G_{1}^{s}\) are the bulk and shear modulus of rock frame.

Normally, double porosity model applies for conditions where the physical properties of the two solid phases are quite different. When solid phase 2 is more permeable than solid phase 1, Pride and Berryman (2003b) proposed the following equation:

$$\gamma_{m} = - \frac{{k_{1} K_{1}^{d} }}{{\eta L^{2} }}\left( {\frac{{a_{12} + B_{0} \left( {a_{22} + a_{33} } \right)}}{{R_{1} - B_{0} /B_{1} }}} \right),$$
(B27)
$$B_{0} = - \frac{{a_{12} + a_{13} }}{{a_{22} + 2a_{23} + a_{33} }},$$
(B28)
$$R{}_{1} = Q_{1} + \frac{{\alpha_{1} (1 - Q_{1} )B_{0} }}{{1 - K_{1}^{d} /K_{2}^{d} }} - \frac{{v_{2} }}{{v_{1} }}\frac{{\alpha_{2} (1 - Q_{2} )B_{0} }}{{1 - K_{2}^{d} /K_{1}^{d} }},$$
(B29)

where L is the average distance between the solid phases (L2 = a2/15), a is the spherical envelop radius. The transfer frequency (wm) can be given by:

$$\omega_{m} = \frac{{\eta B_{1} K_{1}^{d} }}{{k_{1} \alpha_{1} }}(\gamma_{m} \frac{V}{S})^{2} \left( {1 + \sqrt {\frac{{k_{1} B_{2} K_{2}^{d} \alpha_{1} }}{{k_{2} B_{1} K_{1}^{d} \alpha_{2} }}} } \right)^{2} ,$$
(B30)
$$\gamma = \gamma_{m} \sqrt {1 - i\omega /\omega_{m} } ,$$
(B31)
$$\omega = 2\pi f,$$
(B32)

where V/S is volume surface area ratio.

For unconsolidation part (solid phase 2):

$$K_{2}^{d} = \frac{1}{6}\left[ {\frac{{4\left( {1 - \varphi_{0} } \right)^{2} n_{0}^{2} P_{0} }}{{\pi^{4} C_{s}^{2} }}} \right]^{1/3} \frac{{\left( {P_{e} /P_{0} } \right)^{1/2} }}{{\left\{ {1 + \left[ {16P_{e} /\left( {9P_{0} } \right)} \right]^{4} } \right\}^{1/24} }},$$
(B33)
$$G_{2} = 3K_{2}^{d} /5,$$
(B34)
$$P_{e} = (1 - \varphi_{2} )(\rho_{2}^{s} - \rho_{f} )gh,$$
(B35)

where Pe is effective overburden pressure, g is the gravity constant (g = 9.81 m/s2), n0 = 9, P0 = 10Mpa, h is the overburden thickness. \(\varphi_{0}\) is the primary porosity, Cs is the coupling parameter, given by:

$$C_{s} = \frac{1}{4\pi }\left(\frac{1}{{G_{2}^{s} }} + \frac{1}{{K_{2}^{s} + G_{2}^{s} /3}}\right),$$
(B36)

where \(K_{2}^{s}\) and \(G_{2}^{s}\) are the bulk and shear modulus of rock frame.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, D., Liu, X. Identification of gas hydrate based on velocity cross plot analysis. Mar Geophys Res 42, 11 (2021). https://doi.org/10.1007/s11001-021-09431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11001-021-09431-3

Keywords

Navigation