Skip to main content
Log in

Shell-model based study of the direct capture in neutron-rich nuclei

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The radiative neutron capture rates for isotopes of astrophysical interest are commonly calculated within the statistical Hauser–Feshbach reaction model. Such an approach, assuming a high level density in the compound system, can be questioned in light and neutron-rich nuclei for which only a few or no resonant states are available. Therefore, in this work we focus on the direct neutron-capture process. We employ a shell-model approach in several model spaces with well-established effective interactions to calculate spectra and spectroscopic factors in a set of 50 neutron-rich target nuclei in different mass regions, including doubly-, semi-magic and deformed ones. Those theoretical energies and spectroscopic factors are used to evaluate direct neutron capture rates and to test global theoretical models using average spectroscopic factors and level densities based on the Hartree–Fock–Bogoliubov plus combinatorial method. The comparison of shell-model and global model results reveals several discrepancies that can be related to problems in level densities. All the results show however that the direct capture is non-negligible with respect to the by-default Hauser–Feshbach predictions and can be even 100 times more important for the most neutron-rich nuclei close to the neutron drip line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data is available upon request from the authors.]

References

  1. M. Arnould, S. Goriely, K. Takahashi, Phys. Rep. 450, 97 (2007)

    ADS  Google Scholar 

  2. M. Arnould, S. Goriely, Prog. Part. Nucl. Phys. 112, 103766 (2020)

    Google Scholar 

  3. S. Goriely, S. Hilaire, A.J. Koning, Astron. Astrophys. 487, 767 (2008)

    ADS  Google Scholar 

  4. G.R. Satchler, in Introduction to nuclear reactions, Macmillan press ltd. (1980)

  5. H. Oberhummer, G. Staudt, Direct Reaction Mechanism in Astrophysically Relevant Processes, in: H. Oberhummer (Ed.), Nuclei in the Cosmos, Springer, Heidelberg, 29 (1991)

  6. A. Mengoni, T. Otsuka, M. Ishihara, Phys. Rev. C 52, R2334 (1995)

    ADS  Google Scholar 

  7. H. Beer, C. Coceva, P.V. Sedyshev, Y.P. Popov, H. Herndl, R. Hofinger, P. Mohr, H. Oberhummer, Phys. Rev. C 54, 2014 (1996)

    ADS  Google Scholar 

  8. P. Descouvemont, Theoretical Models for Nuclear Astrophysics (Nova Science Publishers, New York, 2003)

    Google Scholar 

  9. P. Descouvemont, J. Phys. G 35, 014006 (2008)

    ADS  Google Scholar 

  10. Y. Xu, S. Goriely, Phys. Rev. C 86, 045801 (2012)

    ADS  Google Scholar 

  11. Y. Xu, S. Goriely, A.J. Koning, S. Hilaire, Phys. Rev. C 90, 024604 (2014)

    ADS  Google Scholar 

  12. S. Goriely, Astron. Astrophys. 325, 414 (1997)

    ADS  Google Scholar 

  13. S. Goriely, S. Hilaire, A.J. Koning, Phys. Rev. C 78, 064307 (2008)

    ADS  Google Scholar 

  14. S. Goriely, Phys. Lett. B 436, 10 (1998)

    ADS  Google Scholar 

  15. A. Koning, J. Delaroche, Nucl. Phys. A 713(3), 231 (2003)

    ADS  Google Scholar 

  16. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 88, 061302(R) (2013)

    ADS  Google Scholar 

  17. E. Caurier, F. Nowacki, Acta Phys. Pol. B 30, 705 (1999)

    ADS  Google Scholar 

  18. E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, Rev. Mod. Phys. 77, 427 (2005)

    ADS  Google Scholar 

  19. J. Fisker et al., At. Data Nucl. Data Tables 79, 241 (2001)

    ADS  Google Scholar 

  20. F. Nowacki, A. Poves, Phys. Rev. C 79(1), 014310 (2009)

    ADS  Google Scholar 

  21. B. Bastin et al., Phys. Rev. Lett. 99, 022503 (2007). https://doi.org/10.1103/PhysRevLett.99.022503

    Article  ADS  Google Scholar 

  22. L. Gaudefroy, O. Sorlin, D. Beaumel, Y. Blumenfeld, Z. Dombrádi et al., Phys. Rev. Lett. 97, 092501 (2006)

    ADS  Google Scholar 

  23. L. Gaudefroy, J.M. Daugas, M. Hass, S. Grévy, C. Stodel et al., Phys. Rev. Lett. 102, 092501 (2009). https://doi.org/10.1103/PhysRevLett.102.092501

    Article  ADS  Google Scholar 

  24. C. Force, S. Grévy, L. Gaudefroy, O. Sorlin, L. Cáceres et al., Phys. Rev. Lett. 105, 102501 (2010)

    ADS  Google Scholar 

  25. D. Santiago-Gonzalez, I. Wiedenhöver, V. Abramkina, M.L. Avila, T. Baugher et al., Phys. Rev. C 83, 061305 (2011)

    ADS  Google Scholar 

  26. H. Liu et al., Phys. Rev. Lett. 122(7), 072502 (2019)

    ADS  Google Scholar 

  27. A. Gade et al., Phys. Rev. C 93(5), 054315 (2016)

    ADS  Google Scholar 

  28. S. Calinescu, L. Cáceres, S. Grévy, O. Sorlin, Z. Dombrádi et al., Phys. Rev. C 93, 044333 (2016)

    ADS  Google Scholar 

  29. P. Srivastava, J.G. Hirsch, M. Ermamatov, V. Kota, Nucl. Phys. A 961, 68 (2017)

    ADS  Google Scholar 

  30. R. Chevrier et al., Phys. Rev. Lett. 108, 162501 (2012). https://doi.org/10.1103/PhysRevLett.108.162501

    Article  ADS  Google Scholar 

  31. S.M. Lenzi, F. Nowacki, A. Poves, K. Sieja, Phys. Rev. C 82(5), 054301 (2010). https://doi.org/10.1103/PhysRevC.82.054301

    Article  ADS  Google Scholar 

  32. J. Ljungvall et al., Phys. Rev. C 81(6), 061301 (2010). https://doi.org/10.1103/PhysRevC.81.061301

    Article  ADS  Google Scholar 

  33. A. Gade et al., Phys. Rev. Lett. 112, 112503 (2014)

    ADS  Google Scholar 

  34. V. Modamio et al., Phys. Rev. C 88, 044326 (2013)

    ADS  Google Scholar 

  35. J. Diriken et al., Phys. Lett. B 736, 533 (2014)

    ADS  Google Scholar 

  36. E. Fiori et al., Phys. Rev. C 85, 034334 (2012)

    ADS  Google Scholar 

  37. E. Rapisarda et al., Phys. Rev. C 84, 064323 (2011)

    ADS  Google Scholar 

  38. E. Sahin et al., Phys. Rev. C 91, 034302 (2015)

    ADS  Google Scholar 

  39. Z. Vajta, D. Sohler, Y. Shiga, K. Yoneda, K. Sieja et al., Phys. Lett. B 782, 99 (2018)

    ADS  Google Scholar 

  40. A. Dijon et al., Phys. Rev. C 85, 031301 (2012)

    ADS  Google Scholar 

  41. P.A. Söderström, S. Nishimura, Z.Y. Xu, K. Sieja, V. Werner et al., Phys. Rev. C 92, 051305 (2015)

    ADS  Google Scholar 

  42. Z. Meisel, S. George, S. Ahn, D. Bazin, B.A. Brown et al., Phys. Rev. C 93, 035805 (2016)

    ADS  Google Scholar 

  43. C. Shand, Z. Podolyak, M. Gorska, P. Doornenbal, A. Obertelli et al., Phys. Lett. B 773, 492 (2017)

    ADS  Google Scholar 

  44. P. Morfouace, S. Franchoo, K. Sieja, I. Matea, L. Nalpas et al., Phys. Lett. B 751, 306 (2015)

    ADS  Google Scholar 

  45. S. Giron, F. Hammache, N. de Séréville, P. Roussel, J. Burgunder et al., Phys. Rev. C 95, 035806 (2017)

    ADS  Google Scholar 

  46. P. Morfouace, S. Franchoo, K. Sieja, I. Stefan, N. de Séréville et al., Phys. Rev. C 93, 064308 (2016)

    ADS  Google Scholar 

  47. Z. Elekes, A. Kripkó, D. Sohler, K. Sieja, K. Ogata et al., Phys. Rev. C 99, 014312 (2019)

    ADS  Google Scholar 

  48. R. Orlandi et al., Phys. Lett. B 740, 298 (2015)

    ADS  Google Scholar 

  49. E. Epelbaum, H.W. Hammer, U.G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)

    ADS  Google Scholar 

  50. S. Bogner, T. Kuo, A. Schwenk, Phys. Rep. 386, 1 (2003)

    ADS  Google Scholar 

  51. J. Litzinger et al., Phys. Rev. C 92, 064322 (2015)

    ADS  Google Scholar 

  52. M. Czerwiński, T. Rzaca-Urban, W. Urban, P. Baczyk, K. Sieja et al., Phys. Rev. C 92, 014328 (2015)

    ADS  Google Scholar 

  53. J. Van de Walle, F. Aksouh, T. Behrens, V. Bildstein, A. Blazhev et al., Phys. Rev. C 79, 014309 (2009)

    ADS  Google Scholar 

  54. http://www.nndc.bnl.gov/

  55. R. Taniuchi, C. Santamaria, P. Doornenbal et al., Nature 569, 53 (2019)

    ADS  Google Scholar 

  56. K. Sieja, F. Nowacki, K. Langanke, G. Martinez-Pinedo, Phys. Rev. C 79, 064310 (2009). https://doi.org/10.1103/PhysRevC.79.064310

    Article  ADS  Google Scholar 

  57. W. Urban, K. Sieja, G.S. Simpson, H. Faust, T. Rzaca-Urban et al., Phys. Rev. C 79, 044304 (2009). https://doi.org/10.1103/PhysRevC.79.044304

    Article  ADS  Google Scholar 

  58. T. Rzaca-Urban, K. Sieja, W. Urban, F. Nowacki, J.L. Durell et al., Phys. Rev. C 79, 024319 (2009). https://doi.org/10.1103/PhysRevC.79.024319

    Article  ADS  Google Scholar 

  59. G.S. Simpson, W. Urban, K. Sieja, J.A. Dare, J. Jolie et al., Phys. Rev. C 82, 024302 (2010). https://doi.org/10.1103/PhysRevC.82.024302

    Article  ADS  Google Scholar 

  60. W. Urban, K. Sieja, G.S. Simpson, T. Soldner, T. Rzaca-Urban et al., Phys. Rev. C 85, 014329 (2012). https://doi.org/10.1103/PhysRevC.85.014329

    Article  ADS  Google Scholar 

  61. J. Wisniewski, W. Urban, M. Czerwinski, J. Kurpeta, A. Płochocki et al., Phys. Rev. C 100, 054331 (2019)

    ADS  Google Scholar 

  62. T. Materna, W. Urban, K. Sieja, U. Köster, H. Faust et al., Phys. Rev. C 92, 034305 (2015)

    ADS  Google Scholar 

  63. F. Didierjean, D. Verney, G. Duchêne, J. Litzinger, K. Sieja et al., Phys. Rev. C 96, 044320 (2017)

    ADS  Google Scholar 

  64. K. Kolos, D. Verney, F. Ibrahim, F. Le Blanc, S. Franchoo et al., Phys. Rev. C 88, 047301 (2013)

    ADS  Google Scholar 

  65. M. Lettmann, V. Werner, N. Pietralla, P. Doornenbal, A. Obertelli et al., Phys. Rev. C 96, 011301 (2017)

    ADS  Google Scholar 

  66. T. Rzaca-Urban, M. Czerwiński, W. Urban, A.G. Smith, I. Ahmad et al., Phys. Rev. C 88, 034302 (2013)

    ADS  Google Scholar 

  67. I. Gratchev et al., Phys. Rev. C 95(5), 051302 (2017)

    ADS  Google Scholar 

  68. K. Sieja, T.R. Rodríguez, K. Kolos, D. Verney, Phys. Rev. C 88, 034327 (2013)

    ADS  Google Scholar 

  69. D. Rochman, S. Goriely, A.J. Koning, H. Ferroukhi, Phys. Lett. B 764, 109 (2017)

    ADS  Google Scholar 

  70. A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012). http://www.talys.eu

  71. M. Czerwinski, T. Rzaca-Urban, K. Sieja, H. Sliwinska, W. Urban et al., Phys. Rev. C 88, 044314 (2013)

    ADS  Google Scholar 

  72. S. Goriely, A. Bauswein, H.-T. Janka, Astrophys. J. Lett. 738, L32 (2011)

    ADS  Google Scholar 

  73. S. Goriely, A. Bauswein, O. Just, H.-T. Janka, Mon. Not. R. Astron. Soc. 452, 3894 (2015)

    ADS  Google Scholar 

  74. O. Just, A. Bauswein, R. Ardevol-Pulpillo, S. Goriely, H.-T. Janka, Mon. Not. R. Astron. Soc. 448, 541 (2015)

    ADS  Google Scholar 

  75. B. Abbott, R. Abbott, T. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)

    ADS  Google Scholar 

  76. R. Ardevol-Pulpillo, H.-T. Janka, O. Just, A. Bauswein, Mon. Not. R. Astron. Soc. 485, 4754 (2019)

    ADS  Google Scholar 

  77. J.-F. Lemaître, S. Goriely, A. Bauswein, H.-T. Janka, Astrophys. Phys. Rev. C (2020) submitted

  78. S. Goriely, Astron. Astrophys. 342, 881 (1999)

    ADS  Google Scholar 

Download references

Acknowledgements

S.G. acknowledges financial support from FNRS (Belgium). This work was partially supported by the Fonds de la Recherche Scientifique - FNRS and the Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO) under the EOS Project No O022818F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sieja.

Additional information

Communicated by Michael Bender

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sieja, K., Goriely, S. Shell-model based study of the direct capture in neutron-rich nuclei. Eur. Phys. J. A 57, 110 (2021). https://doi.org/10.1140/epja/s10050-021-00439-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00439-2

Navigation