Skip to main content
Log in

What Can We Expect from the Inclined Satellite Formation for Temporal Gravity Field Determination?

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The assumption of implementing a Bender-type mission with two pairs of inline satellites by two institutions, one in the inclined satellite formation (ISF) and the other in the polar satellite formation (PSF), has been proven as an optimal selection for the next-generation gravimetric mission (NGGM). The prerequisite of this assumption is to ensure the combination as well as the independency of the missions in the PSF scenario as well as in the ISF scenario. To promote NGGM, we implement a close-loop simulation study to evaluate the performance of the stand-alone ISF mission. In the spectral domain, the ISF estimations show extremely poor quality for zonal and near-zonal coefficients due to the absence of observations over the polar regions, while the sectorial and near-sectorial coefficient estimations show approximately 71 ~ 77% noise reductions when compared with the PSF estimations. In the spectral domain, the ISF mission presents its superior capability in detecting the Earth’s mass variations within its observational areas than the PSF mission. The improvements of ISF are also obtained over the transition zones (50°N ~ 70°N and 50°S ~ 70°S) with 41% noise reductions. In addition, the general better performance of gravity estimations via ISF may promote the potential geoscience applications over the small river basins, the coastal ice sheet and the earthquake areas with better accuracy and finer resolution. The simulation results demonstrate the feasibility of implementing a stand-alone mission in the inclined orbits, and the further possibility of promoting a Bender-type mission via a profound cooperation by two institutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bender, P. L., Wiese D. N., & Nerem R. S. (2008). A possible Dual-GRACE mission with 90 degree and 63 degree inclination orbits, in Proceedings of the 3rd International Symposium on Formation Flying, Missions and Technologies. European Space Agency Symposium Proceedings, SP-654 jILA Pub. 8161, Noordwijk, Netherlands.

  • Cambiotti G, Douch K, Cesare S, Haagmans R, Sneeuw N, Anselmi A, Marotta AM, Sabadini R (2020) On earthquake detectability by the next-generation gravity mission. Surv Geophys. https://doi.org/10.1007/s10712-020-09603-7

    Article  Google Scholar 

  • Chao N, Chen G, Li J, Xiang L, Wang Z, Tian K (2019) Groundwater Storage Change in the Jinsha River Basin from GRACE, Hydrologic Models, and In Situ Data. Ground Water. https://doi.org/10.1111/gwat.12966

    Article  Google Scholar 

  • Chen Q, Shen Y, Francis O, Chen W, Zhang X, Hsu H (2018) Tongji-Grace02s and Tongji-Grace02k: High-precision static GRACE-only global Earth’s gravity field models derived by refined data processing strategies. J Geophys Res Solid Earth 123:6111–6137

    Article  Google Scholar 

  • Daras I, Pail R (2017) Treatment of temporal aliasing effects in the context of next generation satellite gravimetry missions. J Geophys Res Solid Earth. https://doi.org/10.1002/2017JB014250

    Article  Google Scholar 

  • Dobslaw H, Bergmann I, Dill R, Forootan E, Klemann V, Kusche J, Sasgen I (2015) The updated ESA Earth system model for future gravity mission simulation studies. J Geodesy 89(5):505–513

    Article  Google Scholar 

  • Dobslaw H, Bergmann-Wolf I, Forootan E, Dahle C, Mayer-Gürr T, Kusche J, Flechtner F (2016) Modeling of present-day atmosphere and ocean non-tidal de-aliasing errors for future gravity mission simulations. J Geodesy 90:423–436. https://doi.org/10.1007/s00190-015-0884-3

    Article  Google Scholar 

  • Elsaka B, Raimondo J-M, Brieden P et al (2014) Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation. J Geodesy 88:31–43. https://doi.org/10.1007/s00190-013-0665-9

    Article  Google Scholar 

  • Flechtner F, Neumayer K, Dahle C, Dobslaw H, Fagiolini E, Raimondo J, Gu ̈ntner, J., (2016) What can be expected from the GRACE-FO laser ranging interferometer for earth science applications? Surv Geophys 37:453–470

    Article  Google Scholar 

  • Forootan E, Didova O, Kusche J, Löcher A (2013) Comparisons of atmospheric data andreduction methods for the analysis of satellite gravimetry observations. J Geophys Res Solid Earth 118:2382–2396

    Article  Google Scholar 

  • Gruber, T.; Panet, I.; & E.motion2 Team. (2015). Proposal to ESA’s Earth Explorer Call 9: Earth System Mass Transport Mission-E.motion2. Deutsche Geodätische Kommission der Bayerischen Akademie der Wissenschaften, Reihe B, Angewandte Geodäsie, Series B. 2015. Available online: https://dgk.badw.de/fileadmin/user_upload/Files/DGK/docs/b-318.pdf.

  • Guo X, Zhao Q, Ditmar P, Sun Y, Liu J (2018) Improvements in the monthly gravity field solutions through modeling the colored noise in the GRACE data. J Geophys Res Solid Earth 123(8):7040–7054

    Google Scholar 

  • Han S-C, Sauber J, Luthcke SB, Ji C, Pollitz SS (2008) Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data. J Geophys Res Solid Earth 113:B11413

    Article  Google Scholar 

  • Hauk M, Pail R (2018a) Treatment of ocean tide aliasing in the context of a next generation gravity field mission. Geophys J Int 214:345–365

    Article  Google Scholar 

  • He L, Wang L, Huang B, Wei J, Zhou Z, Zhong Y (2020) Anthropogenic and meteorological drivers of 1980–2016 trend in aerosol optical and radiative properties over the Yangtze River Basin. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2019.117188

    Article  Google Scholar 

  • Inácio P, Ditmar P, Klees R, Farahani HH (2015) Analysis of star camera errors in GRACE data and their impact on monthly gravity field models. J Geodesy 89(6):551–571. https://doi.org/10.1007/s00190-015-0797-1

    Article  Google Scholar 

  • Jocob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482:514

    Article  Google Scholar 

  • Kim J. (2000). Simulation study of a low-low satellite-to-satellite tracking mission. The University of Texas at Austin.

  • Kornfeld RP, Arnold BW, Gross MA, Dahya NT, Klipstein WM (2019) GRACE-FO: the gravity recovery and climate experiment follow-on mission. J Spacecr Rockets 56(3):931–951

    Article  Google Scholar 

  • Kusche J, Klees R (2002) Regularization of gravity field estimation from satellite gravity gradients. J Geodesy 76:359–368

    Article  Google Scholar 

  • Landerer FW, Flechtner FM, Save H, Webb FH, Bandikova T, Bertiger WI et al (2020) Extending the global mass change data record: GRACE follow-on instrument and science data Performance. Geophys Res Lett. https://doi.org/10.1029/2020GL088306

    Article  Google Scholar 

  • Li J, Chen J, Wilson CR (2016) Topographic effects on co-seismic gravity change for the 2011 Tohoku-Oki earthquake and comparison with GRACE: Topography affects coseismic gravity. J Geophys Res Solid Earth 121(7):5509–5537

    Article  Google Scholar 

  • Loomis BD, Nerem RS, Luthcke SB (2012) Simulation study of a follow-on gravity mission to GRACE. J Geodesy 86:319–335

    Article  Google Scholar 

  • Lu B, Förste C, Barthelmes F, Petrovic S, Flechtner F, Luo Z et al (2020) Using real polar ground gravimetry data to solve the GOCE polar gap problem in satellite-only gravity field recovery. J Geodesy 94:34

    Article  Google Scholar 

  • Luo J, Chen L, Duan H, Gong Y, Hu S, Ji J et al (2016) TianQin: a space-borne gravitational wave detector. Class Quantum Gravity 63(3):035010

    Article  Google Scholar 

  • Luthcke SB, Zwally HJ, Abdalati W, Rowlands DD, Ray RD, Nerem RS, Lemoine FG, Mccarthy JJ, Chinn DS (2006) Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science 314:1286–1289

    Article  Google Scholar 

  • Luthcke SB, Sabaka TJ, Loomis BD, Arendt AA, McCarthy JJ, Camp J (2013) Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J Glaciol 59(216):613–631

    Article  Google Scholar 

  • Nie Y, Shen Y, Chen Q (2019) Combination analysis of future polar-type gravity mission and GRACE follow-on. Remote Sens 11(2):200. https://doi.org/10.3390/rs11020200

    Article  Google Scholar 

  • Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh WD et al (2011) First GOCE gravity field models derived by three different approaches. J Geodesy 85(11):819–843

    Article  Google Scholar 

  • Pail R, Yeh H-C, Feng W, Hauk M, Purkhauser A, Wang C et al (2019) Next-generation gravity missions: Sino-European numerical simulation comparison exercise. Remote Sens 11:2654. https://doi.org/10.3390/rs11222654

    Article  Google Scholar 

  • Purkhause AF, Siemes C, Pail R (2020) Consistent quantification of the impact of key mission design parameters on the performance of next-generation gravity missions. Geophys J Int 221:1190–1210

    Article  Google Scholar 

  • Ran J, Vizcaino M, Ditmar P, van den Broeke MR, Moon T, Enderlin EM, Wouters B, Klees R (2018) Seasonal mass variations show timing and magnitude of meltwater storage in the Greenland ice sheet. The Cryosphere 12(9):2981–2999. https://doi.org/10.5194/tc-12-2981-2018

    Article  Google Scholar 

  • Reigber C (1989) Gravity field recovery from satellite tracking data. In: Sansò Fernando, Rummel Reiner (eds) Theory of satellite geodesy and gravity field determination, vol 25. Springer, Berlin, Heidelberg, New York, pp 197–234

    Chapter  Google Scholar 

  • Rodell M, Famiglietti JS, Wiese DN, Reager JT, Beaudoing HK, Landerer FW, LO MH (2018) Emerging trends in global freshwater availability. Nature 557:651

    Article  Google Scholar 

  • Rowlands D, Luthcke S, McCarthy J, Klosko S, Chinn D, Lemoine F, Boy J-P, Sabaka T (2010) Global mass flux solutions from GRACE: A comparison of parameter estimation strategies-mass concentrations versus Stokes coefficients. J Geophys Res Solid Earth 115:B01403. https://doi.org/10.1029/2009JB006546

    Article  Google Scholar 

  • Sabaka TJ, Rowlands DD, Luthcke SB, Boy J-P (2010) Improving global mass flux solutions from gravity recovery and climate experiment (GRACE) through forward modeling and continuous time correlation. J Geophys Res Solid Earth 115:B11403. https://doi.org/10.1029/2010JB007533

    Article  Google Scholar 

  • Save H, Bettadpur S, Tapley BD (2016) High-resolution CSR GRACE RL05 mascons. J Geophys Res Solid Earth 121:7547–7569. https://doi.org/10.1002/2016JB013007

    Article  Google Scholar 

  • Sneeuw, N., Iran Pour, S., & ESA-SC4MGV Study Team. (2016). ESA SC4MGV Study: Assessment of Satellite Constellations for Monitoring the Variations in Earth Gravity Field. Living Planet Symposium 2016.

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305(5683):503–505. https://doi.org/10.1126/science.1099192

    Article  Google Scholar 

  • Tregoning P, Watson C, Ramillien G, Mcqueen H, Zhang J (2009) Detecting hydrologic deformation using GRACE and GPS. Geophys Res Lett 36(L15401):139–156. https://doi.org/10.1029/2009GL038718

    Article  Google Scholar 

  • Velicogna I, Mohajerani Y, Geruo A, Landerer F, Mouginot J, Noel B, Rignot E, Sutterley T, van den Broeke M, van Wessem JM, Wiese D (2020) Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow-On missions. Geophys Res Lett. https://doi.org/10.1029/2020GL087291

    Article  Google Scholar 

  • Visser P. (2019). Generation of orbit parameters and analysis of ground tracks for scenarios 12–15 & 16–17. Additional Constellation and Scientific Analysis Studies of the Next Generation Gravity Mission “ADDCON” Technical Note WP641 & WP681. Issue 1, 29-Jan-2019.

  • Watkins MM, Wiese D, Yuan DN, Boening C, Landerer FW (2015) Improving methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J Geophys Res Solid Earth 120:2648–2671. https://doi.org/10.1002/2014JB011547

    Article  Google Scholar 

  • Wiese DN, Nerem RS, Han S-C (2011a) Expected improvements in determining continental hydrology, ice mass variations, ocean bottom pressure signals, and earthquakes using two pairs of dedicated satellites for temporal gravity recovery. J of Geophys Res Solid Earth 116:B11405. https://doi.org/10.1029/2011JB008375

    Article  Google Scholar 

  • Wiese DN, Visser P, Nerem RS (2011b) Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors. Adv Space Res 48:1094–1107. https://doi.org/10.1016/j.asr.2011.05.027

    Article  Google Scholar 

  • Wiese DN, Nerem RS, Lemoine FG (2012) Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites. J Geodesy 86:81–98

    Article  Google Scholar 

  • Wu Y, Zhou H, Zhong B, Luo Z (2017) Regional gravity field recovery using the GOCE gravity gradient tensor and heterogeneous gravimetry and altimetry data. J Geophys Res Solid Earth 122:6928–6952. https://doi.org/10.1002/2017JB014196

    Article  Google Scholar 

  • Xu P, Fukuda Y, Liu Y (2006) Multiple parameter regularization: numerical solutions and applications to the determination of geopotential from precise satellite orbits. J Geodesy 80(1):17–27

    Article  Google Scholar 

  • Yang F, Kusche J, Forootan E, Rietbroek R (2017) Passive-ocean radial basis function approach to improve temporal gravity recoveryfrom GRACE observations. J Geophys Res Solid Earth. https://doi.org/10.1002/2016JB013633

    Article  Google Scholar 

  • Zhong B, Li Q, Chen J, Luo Z, Zhou H (2020) Improved estimation of regional surface mass variations from GRACE inter-satellite geopotential differences using a priori constraints. Remote Sens 12(16):2553. https://doi.org/10.3390/rs12162553

    Article  Google Scholar 

  • Zhou H, Luo Z, Zhou Z, Li Q, Zhong B, Lu B, Hsu H (2018) Impact of different kinematic empirical parameters processing strategies on temporal gravity field model determination. J Geophys Res Solid Earth 123(10):252–276. https://doi.org/10.1029/2018JB015556

    Article  Google Scholar 

  • Zhou H, Zhou Z, Luo Z (2019) A new hybrid processing strategy to improve temporal gravity field solution. J Geophys Res Solid Earth 124(8):9415–9432. https://doi.org/10.1029/2019JB017752

    Article  Google Scholar 

  • Zhou H, Zhou Z, Luo Z, Wang K, Wei M (2020) What can be expected from GNSS tracking of satellite constellations for temporal gravity field model determination? Geophys J Int 222:661–677. https://doi.org/10.1093/gji/ggaa177

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China (No. 42074018, 41931074, 42061134007, 41704012), the National Key Research and Development Program of China (No. 2018YFC1503504, 2018YFC1503503) and the Fundamental Research Funds for the Central Universities (No. 2019kfyXJJ). The ESM AOHIS models used in this work were obtained from the GFZ data services and can be accessed via https://doi.org/10.5880/GFZ.1.3.2014.001. The authors would also like to thank the Editor in Chief and the reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Luo, Z., Zhou, Z. et al. What Can We Expect from the Inclined Satellite Formation for Temporal Gravity Field Determination?. Surv Geophys 42, 699–726 (2021). https://doi.org/10.1007/s10712-021-09641-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-021-09641-9

Keywords

Navigation