Skip to main content
Log in

Observations of abundant structural and electronic phases in potassium-doped single-layer p-quaterphenyl film

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Scanning tunneling microscopy/spectroscopy is applied herein to study the pristine and potassium (K)-doped single-layer p-quaterphenyl (P4P) films grown on the Au(111) substrate at the molecular level. Abundant complex structural and electronic phases are induced by various K doping. The Fermi-level pinning effect is observed at a low doping level. On the contrary, K3P4P exhibits intriguing versatile phases and properties because charge carriers are effectively doped in. For example, two kinds of molecular vibration modes with energies below 100 meV are observed, indicating a possible strong electron-phonon coupling. The splitting of the lowest unoccupied molecular orbital state in K3P4P illustrates an electronic correlation effect, and its strength varies for four different K3P4P phases with different structures. In addition, the appearance of a Kondo resonance on the molecular vacancy/impurity implies a local molecular magnetic moment. Our results demonstrate that the complex electronic properties of an alkali metal-doped P4P/Au film stem from the existence of many competing interactions, such as electron-electron correlations and electron-vibration coupling, which can be effectively tuned via variable carrier doping and molecular structure. Our work also opens new routes toward engineering novel molecular devices and creating new electronic phases in strongly correlated molecular materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Baranovski, Charge Transport in Disordered Solids with Applications in Electronics (John Wiley & Sons Ltd., Chichester, 2006).

    Book  Google Scholar 

  2. H. Klauk, Organic Electronics: Materials, Manufacturing and Applications (Wiley-VCH Verlag GmbH, Weinheim, 2006).

    Book  Google Scholar 

  3. Z. Bao, and J. Locklin, Organic Field-Effect Transistors (CRC Press, Taylor & Francis Group, Boca Raton, 2007).

    Google Scholar 

  4. J. Godlewski, and M. Obarowska, Eur. Phys. J. Spec. Top. 144, 51 (2007).

    Article  Google Scholar 

  5. R. A. Street, Adv. Mater. 21, 2007 (2009).

    Article  Google Scholar 

  6. Y. Wang, R. Yamachika, A. Wachowiak, M. Grobis, and M. F. Crommie, Nat. Mater. 7, 194 (2008), arXiv: 0712.0422.

    Article  ADS  Google Scholar 

  7. R. Mitsuhashi, Y. Suzuki, Y. Yamanari, H. Mitamura, T. Kambe, N. Ikeda, H. Okamoto, A. Fujiwara, M. Yamaji, N. Kawasaki, Y. Maniwa, and Y. Kubozono, Nature 464, 76 (2010).

    Article  ADS  Google Scholar 

  8. M. Q. Ren, W. Chen, Q. Liu, C. Chen, Y. J. Qiao, Y. J. Chen, G. Zhou, Z. H. Li, T. Zhang, Y. J. Yan, and D. L. Feng, Phys. Rev. B 99, 045417 (2019).

    Article  ADS  Google Scholar 

  9. A. Ardavan, S. Brown, S. Kagoshima, K. Kanoda, K. Kuroki, H. Mori, M. Ogata, S. Uji, and J. Wosnitza, J. Phys. Soc. Jpn. 81, 011004 (2012).

    Article  ADS  Google Scholar 

  10. W. L. Yang, V. Brouet, X. J. Zhou, H. J. Choi, S. G. Louie, M. L. Cohen, S. A. Kellar, P. V. Bogdanov, A. Lanzara, A. Goldoni, F. Parmigiani, Z. Hussain, and Z. X. Shen, Science 300, 303 (2003).

    Article  ADS  Google Scholar 

  11. O. Gunnarsson, Alkali-Doped Fullerides: Narrow-Band Solids with Unusual Properties (World Scientific, River Edge, 2004).

    Book  Google Scholar 

  12. H. Furumoto, and H. Ceccon, IEEE J. Quantum Electron. 6, 262 (1970).

    Article  ADS  Google Scholar 

  13. S. W. Hwang, and Y. Chen, Macromolecules 34, 2981 (2001).

    Article  ADS  Google Scholar 

  14. R. S. Wang, Y. Gao, Z. B. Huang, and X. J. Chen, arXiv: 1703.06641arXiv: 1703.05803arXiv: 1703.05804; J. F. Yan, R. S. Wang, K. Zhang, and X. J. Chen, arXiv: 1801.08220; G. Huang, R. S. Wang, and X. J. Chen, arXiv: 1801.06324; J. F. Yan, G. H. Zhong, R. S. Wang, K. Zhang, H. Q. Lin, and X. J. Chen, J. Phys. Chem. Lett. 10, 40 (2019).

    Article  Google Scholar 

  15. W. Liu, H. Lin, R. Kang, X. Zhu, Y. Zhang, S. Zheng, and H. H. Wen, Phys. Rev. B 96, 224501 (2017), arXiv: 1706.06018.

    Article  ADS  Google Scholar 

  16. P. Neha, A. Bhardwaj, V. Sahu, and S. Patnaik, Physica C 554, 1 (2018), arXiv: 1712.01766.

    Article  ADS  Google Scholar 

  17. H. Li, X. Zhou, S. Parham, T. Nummy, J. Griffith, K. N. Gordon, E. L. Chronister, and D. S. Dessau, Phys. Rev. B 100, 064511 (2019).

    Article  ADS  Google Scholar 

  18. M. Marschall, J. Reichert, K. Seufert, W. Auwärter, F. Klappenberger, A. Weber-Bargioni, S. Klyatskaya, G. Zoppellaro, A. Nefedov, T. Strunskus, C. Wöll, M. Ruben, and J. V. Barth, ChemPhysChem 11, 1446 (2010).

    Article  Google Scholar 

  19. Y. Yoshida, H. H. Yang, H. S. Huang, S. Y. Guan, S. Yanagisawa, T. Yokosuka, M. T. Lin, W. B. Su, C. S. Chang, G. Hoffmann, and Y. Hasegawa, J. Chem. Phys. 141, 114701 (2014).

    Article  ADS  Google Scholar 

  20. X. Wu, C. Xu, K. Wang, and X. Xiao, J. Phys. Chem. C 120, 15446 (2016).

    Article  Google Scholar 

  21. N. I. Nijegorodov, W. S. Downey, and M. B. Danailov, Spectrochim. Acta Part A-Mol. Biomol. Spectr. 56, 783 (2000).

    Article  ADS  Google Scholar 

  22. S. You, J. T. Lü, J. Guo, and Y. Jiang, Adv. Phys.-X 2, 907 (2017).

    Google Scholar 

  23. A. J. Heinrich, J. A. Gupta, C. P. Lutz, and D. M. Eigler, Science 306, 466 (2004).

    Article  ADS  Google Scholar 

  24. C. F. Hirjibehedin, C. Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones, and A. J. Heinrich, Science 317, 1199 (2007).

    Article  ADS  Google Scholar 

  25. H. Chen, T. Pope, Z. Y. Wu, D. Wang, L. Tao, D. L. Bao, W. Xiao, J. L. Zhang, Y. Y. Zhang, S. Du, S. Gao, S. T. Pantelides, W. A. Hofer, and H. J. Gao, Nano Lett. 17, 4929 (2017).

    Article  ADS  Google Scholar 

  26. G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, Nat. Chem. 3, 763 (2011).

    Article  Google Scholar 

  27. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M. A. Kastner, Nature 391, 156 (1998), arXiv: cond-mat/9707311.

    Article  ADS  Google Scholar 

  28. S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, Science 281, 540 (1998), arXiv: cond-mat/9804211.

    Article  ADS  Google Scholar 

  29. V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, Science 280, 567 (1998).

    Article  ADS  Google Scholar 

  30. V. Iancu, A. Deshpande, and S. W. Hla, Phys. Rev. Lett. 97, 266603 (2006), arXiv: cond-mat/0611180.

    Article  ADS  Google Scholar 

  31. M. Ternes, A. J. Heinrich, and W. D. Schneider, J. Phys.-Condens. Matter 21, 053001 (2009).

    Article  ADS  Google Scholar 

  32. Z. H. Liu, M. Kobayashi, B. C. Paul, Z. N. Bao, and Y. Nishi, Phys. Rev. B 82, 035311 (2010).

    Article  ADS  Google Scholar 

  33. P. Amsalem, J. Niederhausen, A. Wilke, G. Heimel, R. Schlesinger, S. Winkler, A. Vollmer, J. P. Rabe, and N. Koch, Phys. Rev. B 87, 035440 (2013).

    Article  ADS  Google Scholar 

  34. O. L. A. Monti, J. Phys. Chem. Lett. 3, 2342 (2012).

    Article  Google Scholar 

  35. A. Ruff, M. Sing, R. Claessen, H. Lee, M. Tomić, H. O. Jeschke, and R. Valentí, Phys. Rev. Lett. 110, 216403 (2013), arXiv: 1210.4065.

    Article  ADS  Google Scholar 

  36. G. Giovannetti, and M. Capone, Phys. Rev. B 83, 134508 (2011), arXiv: 1011.3308.

    Article  ADS  Google Scholar 

  37. G. Giovannetti, G. Brocks, and J. van den Brink, Phys. Rev. B 77, 035133 (2008), arXiv: cond-mat/0609405.

  38. R. Claessen, M. Sing, U. Schwingenschlögl, P. Blaha, M. Dressel, and C. S. Jacobsen, Phys. Rev. Lett. 88, 096402 (2002), arXiv: cond-mat/0201561.

    Article  ADS  Google Scholar 

  39. Y. Nomura, K. Nakamura, and R. Arita, Phys. Rev. B 85, 155452 (2012), arXiv: 1112.3483.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YaJun Yan.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11774060), the National Key R&D Program of the MOST of China (Grant Nos. 2016YFA0300200, 2017YFA0303004, 2017YFA0303104, 2016YFA0302300, and 2017YFA0303003), the National Basic Research Program of China (Grant No. 2015CB921700), the Science Challenge Project (Grant No. TZ2016004), and the Shanghai Education Development Foundation and Shanghai Municipal Education Commission (Chenguang Program).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Ren, M., Zhang, T. et al. Observations of abundant structural and electronic phases in potassium-doped single-layer p-quaterphenyl film. Sci. China Phys. Mech. Astron. 64, 256811 (2021). https://doi.org/10.1007/s11433-020-1671-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1671-y

Keywords

Navigation