Skip to main content
Log in

Test of a model coupling of electromagnetic and gravitational fields by using high-frequency gravitational waves

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Models of the coupling of electromagnetic and gravitational fields have been studied extensively for many years. In this paper, we consider the coupling between the Maxwell field and the Weyl tensor of the gravitational field to study how the wavevector of the electromagnetic wave is affected by a plane gravitational wave. We find that the wavevector depends upon the frequency and direction of polarization of the electromagnetic waves, the parameter that couples the Maxwell field and the Weyl tensor, and the angle between the direction of propagation of the electromagnetic wave and the coordinate axis. The results show that this coupling model can be tested by the detection of high-frequency gravitational waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. T. Drummond, and S. J. Hathrell, Phys. Rev. D 22, 343 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  2. A. B. Balakin, and J. P. S. Lemos, Class. Quantum Grav. 22, 1867 (2005), arXiv: gr-qc/0503076

    Article  ADS  Google Scholar 

  3. A. B. Balakin, V. V. Bochkarev, and J. P. S. Lemos, Phys. Rev. D 77, 084013 (2008), arXiv: 0712.4066.

    Article  ADS  Google Scholar 

  4. V. Faraoni, E. Gunzig, and P. Nardone, Fundament. Cosmi. Phys. 20, 121 (1998).

    ADS  Google Scholar 

  5. F. W. Hehl, and Y. N. Obukhov, How Does the Electromagnetic Field Couple to Gravity, in Particular to Metric, Nonmetricity, Torsion, and Curvature? In: Gyros, Clocks, Interferometers…: Testing Relativistic Graviy in Space. Lecture Notes in Physics. Vol. 562 (Springer, Berlin, Heidelberg, 2000), p. 479.

    Chapter  Google Scholar 

  6. G. M. Shore, Nucl. Phys. B 605, 455 (2001).

    Article  ADS  Google Scholar 

  7. G. Li, and X. M. Deng, Ann. Phys. 382, 136 (2017).

    Article  ADS  Google Scholar 

  8. G. Li, and X. M. Deng, Commun. Theor. Phys. 70, 721 (2018).

    Article  Google Scholar 

  9. W. T. Ni, Phys. Rev. Lett. 38, 301 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  10. R. Lafrance, and R. C. Myers, Phys. Rev. D 51, 2584 (1995).

    Article  ADS  Google Scholar 

  11. M. Novello, L. A. R. Oliveira, and J. M. Salim, Class. Quantum Grav. 13, 1089 (1996).

    Article  ADS  Google Scholar 

  12. J. Jing, S. Chen, and Q. Pan, Ann. Phys. 367, 219 (2016), arXiv: 1510.03316.

    Article  ADS  Google Scholar 

  13. A. Ritz, and J. Ward, Phys. Rev. D 79, 066003 (2009), arXiv: 0811.4195.

    Article  ADS  Google Scholar 

  14. J. P. Wu, Y. Cao, X. M. Kuang, and W. J. Li, Phys. Lett. B 697, 153 (2011), arXiv: 1010.1929.

    Article  ADS  Google Scholar 

  15. D. Z. Ma, Y. Cao, and J. P. Wu, Phys. Lett. B 704, 604 (2011), arXiv: 1201.2486.

    Article  ADS  Google Scholar 

  16. S. Chen, and J. Jing, Phys. Rev. D 88, 064058 (2013), arXiv: 1307.7459.

    Article  ADS  Google Scholar 

  17. S. Chen, and J. Jing, Phys. Rev. D 89, 104014 (2014), arXiv: 1310.1807.

    Article  ADS  Google Scholar 

  18. S. Chen, and J. Jing, Phys. Rev. D 90, 124059 (2014), arXiv: 1408.5324.

    Article  ADS  Google Scholar 

  19. S. Chen, and J. Jing, J. Cosmol. Astropart. Phys. 2015(10), 002 (2015), arXiv: 1502.01088.

    Article  Google Scholar 

  20. S. Chen, S. Wang, Y. Huang, J. Jing, and S. Wang, Phys. Rev. D 95, 104017 (2017), arXiv: 1611.08783.

    Article  ADS  MathSciNet  Google Scholar 

  21. H. Liao, S. Chen, and J. Jing, Phys. Lett. B 728, 457 (2014), arXiv: 1312.1144.

    Article  ADS  Google Scholar 

  22. J. Li, Z.-C. Che, and Q.-G. Huang, Sci. China-Phys. Mech. Astron. 62, 110421 (2019).

    Article  ADS  Google Scholar 

  23. R. Niu, and W. Zhao, Sci. China-Phys. Mech. Astron. 62, 970411 (2019), arXiv: 1812.00208.

    Article  ADS  Google Scholar 

  24. X. L. Fan, J. Li, X. Li, Y. H. Zhong, and J. W. Cao, Sci. China-Phys. Mech. Astron. 62, 969512 (2019), arXiv: 1811.01380.

    Article  ADS  Google Scholar 

  25. X. Zhang, Sci. China-Phys. Mech. Astron. 62, 110431 (2019).

    Article  ADS  Google Scholar 

  26. F. Y. Li, M. X. Tang, and D. P. Shi, Phys. Rev. D 67, 104008 (2003), arXiv: gr-qc/0306092.

    Article  ADS  Google Scholar 

  27. F. Li, H. Wen, Z. Fang, L. Wei, Y. Wang, and M. Zhang, Nucl. Phys. B 911, 500 (2016), arXiv: 1505.06546.

    Article  ADS  Google Scholar 

  28. F. Y. Li, H. Wen, Z. Y. Fang, D. Li, and T. J. Zhang, arXiv: 1712.00766.

  29. R. Zhang, and J. Jing, Eur. Phys. J. C 78, 796 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiliang Jing.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12035005, and 11875025), and the National Key Research and Development Program of China (Grant No. 2020YFC2201400).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Wang, M. & Jing, J. Test of a model coupling of electromagnetic and gravitational fields by using high-frequency gravitational waves. Sci. China Phys. Mech. Astron. 64, 250411 (2021). https://doi.org/10.1007/s11433-020-1674-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1674-0

Keywords

Navigation