Skip to main content
Log in

Using chaos enhanced hybrid firefly particle swarm optimization algorithm for solving continuous optimization problems

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Optimization becomes more important and the use of optimization methods is becoming widespread with the developments in computer sciences. Researchers from different scientific fields are looking for better solutions to solve complex problems with optimization methods. In some complex problems, optimal results can be obtained utilizing metaheuristic algorithms. Researchers carry out different studies to improve the performance of present metaheuristic algorithms. Although the success of metaheuristic algorithms has been seen in previous studies, there are some weaknesses in these algorithms. Therefore, successful results cannot be obtained for each problem sometimes. In order to overcome this problem, more successful algorithms can be obtained by hybridizing the strong points of the different methods together. In addition, one of the important factors affecting the success of optimization algorithms is scanning ability of the solution space in order to find the optima. Exploring search space is carried out using random variables by some metaheuristic algorithms. The chaotic values that are generated by chaotic maps can be used instead of random values. Thus, search ability of algorithms performs more dynamically. In this study, hybrid firefly and particle swarm optimization algorithms are transformed to a chaotic-based algorithm by use of 10 different chaotic maps. Random valued parameters are generated by chaotic maps. In order to indicate the performances between different dimensions, CEC 2015 benchmark and constraint problems are used in experimental studies. Chaos enhanced methods are compared against canonical and hybrid optimization algorithms. It has been seen that obtained results of the proposed method were sufficiently successful and reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. El-Shorbagy M A, Mousa A A and Nasr S M 2016 A chaos-based evolutionary algorithm for general nonlinear programming problems; Chaos Solitons Fractals 85 8–21. https://doi.org/10.1016/j.chaos.2016.01.007

    Article  MathSciNet  MATH  Google Scholar 

  2. Aydilek I B 2018 A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems; Appl. Soft Comput. 66 232–249. https://doi.org/10.1016/j.asoc.2018.02.025

    Article  Google Scholar 

  3. Aydilek İ B, Tenekeci M E, Karaçizmeli İ H, Kaya S and Gümüşçü A 2020 Improving hybrid firefly and particle swarm algorithm with chaotic maps; Harran Univ. J. Eng.. 4(2) 69–78

    Google Scholar 

  4. Hosseinpourfard R and Javidi M 2015 Chaotic pso using the lorenz system: an efficient approach for optimizing nonlinear problems; Cankaya Univ. J. Sci. Eng. 12(1) 40–59

    Google Scholar 

  5. Pluhacek M, Senkerik R and Davendra D 2015 Chaos particle swarm optimization with Eensemble of chaotic systems; Swarm Evolut. Comput. 25 29–35. https://doi.org/10.1016/j.swevo.2015.10.008

    Article  Google Scholar 

  6. Pluhacek M, Senkerik R, Davendra D and Ieee 2015 Multiple choice strategy with dimensional mutation for PSO algorithm enhanced with chaotic dissipative standard map. IEEE Congr. Evolut. Comput. 1404–1409

  7. Liu B, Wang L, Jin Y H, Tang F and Huang D X 2005 Improved particle swarm optimization combined with chaos; Chaos Solitons Fractals. 25(5) 1261–1271. https://doi.org/10.1016/j.chaos.2004.11.095

    Article  MATH  Google Scholar 

  8. Xiang T, Liao X and Wong K W 2007 An improved particle swarm optimization algorithm combined with piecewise linear chaotic map; Appl. Math. Comput. 190(2) 1637–1645. https://doi.org/10.1016/j.amc.2007.02.103

    Article  MathSciNet  MATH  Google Scholar 

  9. Alatas B, Akin E and Ozer A B 2009 Chaos embedded particle swarm optimization algorithms; Chaos Solitons Fractals. 40(4) 1715–1734. https://doi.org/10.1016/j.chaos.2007.09.063

    Article  MathSciNet  MATH  Google Scholar 

  10. Hefny H A and Azab S S 2010 Chaotic particle swarm optimization. In: 7th International Conference on Informatics and Systems

  11. Wan Z P, Wang G M and Sun B 2013 A hybrid intelligent algorithm by combining particle swarm optimization with chaos searching technique for solving nonlinear bilevel programming problems; Swarm Evolut. Comput. 8 26–32. https://doi.org/10.1016/j.swevo.2012.08.001

    Article  Google Scholar 

  12. Kazem A, Sharifi E, Hussain F K, Saberi M and Hussain O K 2013 Support vector regression with chaos-based firefly algorithm for stock market price forecasting; Appl. Soft Comput. 13(2) 947–958. https://doi.org/10.1016/j.asoc.2012.09.024

    Article  Google Scholar 

  13. Coelho L D, Bernert D L D, Mariani V C and Ieee 2011 A Chaotic Firefly Algorithm Applied to Reliability-Redundancy Optimization. 2011 IEEE Congr. Evolut. Comput. 517–521

  14. Gandomi A H, Yang X S, Talatahari S and Alavi A H 2013 Firefly algorithm with chaos; Commun. Nonlinear Sci. Numer. Simul. 18(1) 89–98. https://doi.org/10.1016/j.cnsns.2012.06.009

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu W X, Wang J N, Li Y L and Wang Z H 2017 The chaos and stability of firefly algorithm adjacent individual; TELKOMNIKA. 15(4) 1733–1740

    Article  Google Scholar 

  16. Wang G G, Gandomi A H, Alavi A H and Gong D 2019 A comprehensive review of krill herd algorithm: variants, hybrids and applications; Artif. Intell. Rev. 51 119–148. https://doi.org/10.1007/s10462-017-9559-1

    Article  Google Scholar 

  17. Guvenc U, Duman S and Hınıslıoglu Y 2017 Chaotic moth swarm algorithm. In: IEEE International Conference on Innovations in Intelligent Systems and Applications

  18. Liang H J, Liu Y G, Shen Y J, Li F Z and Man Y C 2018 A hybrid bat algorithm for economic dispatch with random wind power; IEEE Trans. Power Syst. 33(5) 5052–5061. https://doi.org/10.1109/tpwrs.2018.2812711

    Article  Google Scholar 

  19. Gandomi A H and Yang X S 2014 Chaotic bat algorithm; J. Comput. Sci. 5(2) 224–232. https://doi.org/10.1016/j.jocs.2013.10.002

    Article  MathSciNet  Google Scholar 

  20. Alatas B 2010 Chaotic bee colony algorithms for global numerical optimization; Expert Syst. Appl. 37(8) 5682–5687. https://doi.org/10.1016/j.eswa.2010.02.042

    Article  Google Scholar 

  21. Metlicka M and Davendra D 2015 Chaos driven discrete artificial bee algorithm for location and assignment optimisation problems; Swarm Evolut. Comput. 25 15–28. https://doi.org/10.1016/j.swevo.2015.03.002

    Article  Google Scholar 

  22. Senkerik R, Pluhacek M, Oplatkova Z K, Davendra D and Ieee 2015 On the parameter settings for the chaotic dynamics embedded differential evolution. 2015 IEEE Congr. Evolut. Comput. 1410–1417

  23. Senkerik R, Viktorin A, Pluhacek M and Kadavy T 2018 On the population diversity for the chaotic differential evolution. In: IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings [online]. Rio de Janeiro: Institute of Electrical and Electronics Engineers Inc. 1153–1160

  24. Damanahi P M, Veisi G, Chabok S and Ieee 2015 Improved Differential Evolution algorithm based on chaotic theory and a novel Hill-Valley method for large-scale Multimodal optimization problems. In: Second International Congress on Technology, Communication and Knowledge. 268–275

  25. Shen D M, Jiang T, Chen W, Shi Q, Gao S C and Ieee 2015 Improved Chaotic Gravitational Search Algorithms for Global Optimization. IEEE Congr. Evolut. Comput. 1220–1226

  26. Talatahari S, Azar B F, Sheikholeslami R and Gandomi A H 2012 Imperialist competitive algorithm combined with chaos for global optimization; Commun. Nonlinear Sci. Numer. Simul. 17(3) 1312–1319. https://doi.org/10.1016/j.cnsns.2011.08.021

    Article  MathSciNet  MATH  Google Scholar 

  27. Yuan X F, Zhang T, Xiang Y Z and Dai X S 2015 Parallel chaos optimization algorithm with migration and merging operation; Appl. Soft Comput. 35 591–604. https://doi.org/10.1016/j.asoc.2015.05.050

    Article  Google Scholar 

  28. Yang D X, Liu Z J and Zhou J L 2014 Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization; Commun. Nonlinear Sci. Numer. Simul. 19(4) 1229–1246. https://doi.org/10.1016/j.cnsns.2013.08.017

    Article  MathSciNet  MATH  Google Scholar 

  29. Naanaa A 2015 Fast chaotic optimization algorithm based on spatiotemporal maps for global optimization; Appl. Math. Comput. 269 402–411. https://doi.org/10.1016/j.amc.2015.07.111

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu X, Rong H and Trovati M et al 2018 CS-PSO: chaotic particle swarm optimization algorithm for solving combinatorial optimization problems; Soft Comput. 22 783–795. https://doi.org/10.1007/s00500-016-2383-8

    Article  Google Scholar 

  31. Xusheng G, Wenming G and Jun H 2017 Robot path planning based on genetic and chaotic optimization algorithm. In: 5th International Conference on Computer, Automation and Power Electronics

  32. Chunyan J, Rong G and Xi C 2017 Particle swarm optimization particle filter target tracking algorithm based on adaptive chaotic mixing strategy; Boletín Técnico. 55(18) 563–570

    Google Scholar 

  33. Saremi S, Mirjalili S and Lewis A 2014 Biogeography-based optimisation with chaos; Neural Comput. Appl. 25(5) 1077–1097. https://doi.org/10.1007/s00521-014-1597-x

    Article  Google Scholar 

  34. Wang Y H and Li X T 2017 A hybrid chaotic biogeography based optimization for the sequence dependent setup times flowshop scheduling problem with weighted tardiness objective; IEEE Access.. https://doi.org/10.1109/access.2017.2769100

    Article  Google Scholar 

  35. Ryter R, Stauffer M, Hanne T, Dornberger R and Ieee 2015 Analysis of Chaotic Maps Applied to Self-Organizing Maps for the Traveling Salesman Problem. In: IEEE Congress on Evolutionary Computation. 1717-1724

  36. Sayed G I, Darwish A and Hassanien A E 2017 Chaotic Crow Search Algorithm for Engineering and Constrained Problems. 2017 12th International Conference on Computer Engineering and Systems. 676-681

  37. Rahman T A Z, As'arry A, Jalil N A A, Ahmad R and Ieee 2017 Chaotic fractal search algorithm for global optimization with application to control design. 2017 IEEE Symp. Comput. Appl. Ind. Electron. 111–116

  38. Tavazoei M S and Haeri M 2007 Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms; Appl. Math. Comput. 187(2) 1076–1085. https://doi.org/10.1016/j.amc.2006.09.087

    Article  MathSciNet  MATH  Google Scholar 

  39. Sayed G I, Khoriba G and Haggag M H 2018 A novel chaotic salp swarm algorithm for global optimization and feature selection; Appl. Intell. 48(10) 3462–3481. https://doi.org/10.1007/s10489-018-1158-6

    Article  Google Scholar 

  40. Aziz N H A, Ibrahim Z, Aziz N A A, Mohamad M S and Watada J 2018 Single-solution Simulated Kalman Filter algorithm for global optimisation problems; Sādhanā. https://doi.org/10.1007/s12046-018-0888-9

    Article  MathSciNet  MATH  Google Scholar 

  41. Turgut M S, Turgut O E and Eliiyi D T 2020 Island-based crow search algorithm for solving optimal control problems; Appl. Soft Comput. 90 106–170. https://doi.org/10.1016/j.asoc.2020.106170

    Article  Google Scholar 

  42. Sattar D and Salim R 2020 A smart metaheuristic algorithm for solving engineering problems; Eng. Comput.. https://doi.org/10.1007/s00366-020-00951-x

    Article  Google Scholar 

  43. Joshi S K and Bansal J C 2020 Parameter tuning for meta-heuristics; Knowl. Based Syst. 189 105094. https://doi.org/10.1016/j.knosys.2019.105094

    Article  Google Scholar 

  44. Yang X S 2009 Firefly algorithms for multimodal optimisation. In: Proc. 5th Symposium on Stochastic Algorithms Foundations and Applications. 169–178

  45. Kennedy J and Eberhart R 1995 Particle swarm optimization. In: ICNN'95 - International Conference on Neural Networks, Australia

  46. Gandomi A H and Alavi A H 2012 Krill herd: A new bio-inspired optimization algorithm; Commun. Nonlinear Sci. Numer. Simul. 17(12) 4831–4845. https://doi.org/10.1016/j.cnsns.2012.05.010

    Article  MathSciNet  MATH  Google Scholar 

  47. Gandomi A H, Yang X S, Alavi A H and Talatahari S 2013 Bat algorithm for constrained optimization tasks; Neural Comput. Appl. 22(6) 1239–1255. https://doi.org/10.1007/s00521-012-1028-9

    Article  Google Scholar 

  48. Kohli M and Arora S 2018 Chaotic grey wolf optimization algorithm for constrained optimization problems; J. Comput. Des. Eng. 5(4) 458–472. https://doi.org/10.1016/j.jcde.2017.02.005

    Article  Google Scholar 

  49. Liang J J, Qu B Y, Suganthan P N and Chen Q 2014 Problem Definitions and Evaluation Criteria for the CEC 2015 Competition on Learning-based Real-Parameter Single Objective Optimization, Technical Report 201411A. Computational Intelligence Laboratory. Zhengzhou University, Zhengzhou, China and Technical Report, Nanyang Technological University, Singapore

  50. Ngo T T, Sadollah A and Kim J H 2016 A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems; J. Comput. Sci. 13 68–82. https://doi.org/10.1016/j.jocs.2016.01.004

    Article  MathSciNet  Google Scholar 

  51. Chen Q, Liu B, Zhang Q, Liang J J, Suganthan P N and Qu B Y 2014 Problem Definition and Evaluation Criteria for CEC 2015 Special Session and Competition on Bound Constrained Single-Objective Computationally Expensive Numerical Optimization. Technical Report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Technical Report, Nanyang Technological University, Singapore

  52. Arunachalam S, AgnesBhomila T, Ramesh B 2015 Hybrid particle swarm optimization algorithm and firefly algorithm based combined economic and emission dispatch including valve point effect. Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 647–660. Doi:https://doi.org/10.1007/978-3-319-20294-5_56

  53. Kora P and Rama K S 2016 Hybrid firefly and particle swarm optimization algorithm for the detection of bundle branch block; Int. J. Cardiovasc. Acad. 2 44–48. https://doi.org/10.1016/j.ijcac.2015.12.001

    Article  Google Scholar 

  54. Lampinen J 2002 A constraint handling approach for the differential evolution algorithm; IEEE C. Evol. Computat. 2 1468–1473

    Google Scholar 

  55. Andersson M, Bandaru S, Ng A H C and Syberfeldt A 2015 Parameter tuned CMA-ES on the CEC’15 expensive problems. IEEE C. Evol. Comput. Sendai, Japan

  56. Tanweer M R, Suresh S and Sundararajan N 2015 Improved SRPSO algorithm for solving CEC 2015 computationally expensive numerical optimization problems. ; 2015 IEEE Congr. Evol. Comput. CEC 2015 1943–1949. https://doi.org/10.1109/CEC.2015.7257123

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by The Scientific and Technological Research Council of Turkey (TUBITAK), the project number 118E355. The numerical calculations reported in this paper were partially performed at Harran University High Performance Computing (Harran HPC) laboratory. The authors thank the TUBITAK and Harran HPC for all the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Emin Tenekeci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydilek, İ.B., Karaçizmeli, İ.H., Tenekeci, M.E. et al. Using chaos enhanced hybrid firefly particle swarm optimization algorithm for solving continuous optimization problems. Sādhanā 46, 65 (2021). https://doi.org/10.1007/s12046-021-01572-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-021-01572-w

Keywords

Navigation