Skip to main content
Log in

Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials, due to its excellent mechanical, unique electrical and optical properties, have become hot materials in the field of photocatalysis. Especially, 2D heterostructures can well inhibit the recombination of photogenerated electrons and holes in photocatalysis because of its special energy band structures and carrier transport characteristics, which are conducive to enhancing photoenergy conversion capacity and improving oxidation and reduction ability, so as to purify pollutants and store energy. In this minireview, we summarize recent theoretical progress in direct Z-scheme photocatalysis of 2D heterostructures, focusing on physical mechanism and improving catalytic efficiency. Current challenges and prospects for 2D direct Z-scheme photocatalysts are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Di, J. Xiong, H. Li, and Z. Liu, Ultrathin 2D photocatalysts: Electronic-structure tailoring, hybridization, and applications, Adv. Mater. 30(1), 1704548 (2018)

    Article  Google Scholar 

  2. J. D. Xiao and H. L. Jiang, Metal-organic frameworks for photocatalysis and photothermal catalysis, Acc. Chem. Res. 52(2), 356 (2019)

    Article  Google Scholar 

  3. T. Su, Z. Liu, Y. Liang, Z. Qin, J. Liu, and Y. Huang, Preparation of PbYO composite photocatalysts for degradation of methyl orange under visible-light irradiation, Catal. Commun. 18, 93 (2012)

    Article  Google Scholar 

  4. Z. Zhao, H. An, J. Lin, M. Feng, V. Murugadoss, T. Ding, H. Liu, Q. Shao, X. Mai, N. Wang, H. Gu, S. Angaiah, and Z. Guo, Progress on the photocatalytic reduction removal of chromium contamination, Chem. Rec. 19(5), 873 (2019)

    Article  Google Scholar 

  5. B. Luo, G. Liu, and L. Wang, Recent advances in 2D materials for photocatalysis, Nanoscale 8(13), 6904 (2016)

    Article  ADS  Google Scholar 

  6. Y. Huang, H. Xu, H. Yang, Y. Lin, H. Liu, and Y. Tong, Efficient charges separation using advanced BiOI-based hollow spheres decorated with palladium and manganese dioxide nanoparticles, ACS Sustain. Chem. & Eng. 6(2), 2751 (2018)

    Article  Google Scholar 

  7. T. Su, R. Peng, Z. D. Hood, M. Naguib, I. N. Ivanov, J. K. Keum, Z. Qin, Z. Guo, and Z. Wu, One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution, ChemSusChem 11(4), 688 (2018)

    Article  Google Scholar 

  8. X. Ma, D. Jiang, P. Xiao, Y. Jin, S. Meng, and M. Chen, 2D/2D heterojunctions of WO3 nanosheet/\({{\rm{K}}^ + }{\rm{C}}{{\rm{a}}_2}{\rm{N}}{{\rm{b}}_3}{\rm{O}}_{10}^ - \) ultrathin nanosheet with improved charge separation efficiency for significantly boosting photocatalysis, Catal. Sci. Technol. 7(16), 3481 (2017)

    Article  Google Scholar 

  9. Y. R. Lv, R. K. He, Z. Y. Chen, X. Li, and Y. H. Xu, Fabrication of hierarchical copper sulfide/bismuth tungstate p-n heterojunction with two-dimensional (2D) interfacial coupling for enhanced visible-light photocatalytic degradation of glyphosate, J. Colloid Interface Sci. 560, 293 (2020)

    Article  ADS  Google Scholar 

  10. Y. Bao and K. Chen, Novel Z-scheme BiOBr/reduced graphene oxide/protonated g-C3N4 photocatalyst: Synthesis, characterization, visible light photocatalytic activity and mechanism, Appl. Surf. Sci. 437, 51 (2018)

    Article  ADS  Google Scholar 

  11. L. Ju, Y. Dai, W. Wei, M. Li, and B. Huang, DFT investigation on two-dimensional GeS/WS2 van der Waals heterostructure for direct Z-scheme photocatalytic overall water splitting, Appl. Surf. Sci. 434, 365 (2018)

    Article  ADS  Google Scholar 

  12. C. F. Fu, R. Zhang, Q. Luo, X. Li, and J. Yang, Construction of direct Z-Scheme photocatalysts for overall water splitting using two-dimensional van der waals heterojunctions of metal dichalcogenides, J. Comput. Chem. 40(9), 980 (2019)

    Article  Google Scholar 

  13. B. Wang, X. Wang, H. Yuan, T. Zhou, J. Chang, and H. Chen, Direct Z-scheme photocatalytic overall water splitting on two dimensional MoSe2/SnS2 heterojunction, Int. J. Hydrogen Energy 45(4), 2785 (2020)

    Article  Google Scholar 

  14. P. Xia, B. Zhu, B. Cheng, J. Yu, and J. Xu, 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity, ACS Sustain. Chem. & Eng. 6(1), 965 (2018)

    Article  Google Scholar 

  15. Y. Lee, Y. Hwang, and Y. C. Chung, Achieving type I, II, and III heterojunctions using functionalized MXene, ACS Appl. Mater. Interfaces 7(13), 7163 (2015)

    Article  Google Scholar 

  16. Z. Li, J. Hou, B. Zhang, S. Cao, Y. Wu, Z. Gao, X. Nie, and L. Sun, Two-dimensional Janus heterostructures for superior Z-scheme photocatalytic water splitting, Nano Energy 59, 537 (2019)

    Article  Google Scholar 

  17. B. Wang, H. Yuan, J. Chang, X. Chen, and H. Chen, Two dimensional InSe/C2N van der Waals heterojunction as enhanced visible-light-responsible photocatalyst for water splitting, Appl. Surf. Sci. 485, 375 (2019)

    Article  ADS  Google Scholar 

  18. J. Low, J. Yu, M. Jaroniec, S. Wageh, and A. A. Al-Ghamdi, Heterojunction photocatalysts, Adv. Mater. 29(20), 1601694 (2017)

    Article  Google Scholar 

  19. S. Shen, and S. S. Mao, Nanostructure designs for effective solar-to-hydrogen conversion, Nanophotonics 1(1), 31 (2012)

    Article  ADS  Google Scholar 

  20. B. Chen, P. Li, S. Zhang, W. Zhang, X. Dong, F. Xi, and J. Liu, The enhanced photocatalytic performance of Z-scheme two-dimensional/two-dimensional heterojunctions from graphitic carbon nitride nanosheets and titania nanosheets, J. Colloid Interface Sci. 478, 263 (2016)

    Article  ADS  Google Scholar 

  21. B. Xia, F. Deng, S. Zhang, L. Hua, X. Luo, and M. Ao, Design and synthesis of robust Z-scheme ZnS-SnS2 n-n heterojunctions for highly efficient degradation of pharmaceutical pollutants: Performance, valence/conduction band offset photocatalytic mechanisms and toxicity evaluation, J. Hazard. Mater. 392, 122345 (2020)

    Article  Google Scholar 

  22. Y. Liu, P. Lv, W. Zhou, and J. Hong, Built-in electric field hindering photogenerated carrier recombination in polar bilayer SnO / BiOX (X = Cl, Br, I) for water splitting, J. Phys. Chem. C 124(18), 9696 (2020)

    Article  Google Scholar 

  23. T. Su, Z. Qin, H. Ji, and Z. Wu, An overview of photocatalysis facilitated by 2D heterojunctions, Nanotechnology 30(50), 502002 (2019)

    Article  Google Scholar 

  24. X. Chen, R. Hu, and F. Sun, Particle size effect of Ag catalyst for oxygen reduction reaction: Activity and stability, J. Renew. Sustain. Energy 10(5), 054301 (2018)

    Article  Google Scholar 

  25. J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. T. Lee, J. Zhou, and Z. Kang, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway, Science 347(6225), 970 (2015)

    Article  ADS  Google Scholar 

  26. X. Lv, W. Wei, Q. Sun, F. Li, B. Huang, and Y. Dai, Two-dimensional germanium monochalcogenides for photocatalytic water splitting with high carrier mobility, Appl. Catal. B 217, 275 (2017)

    Article  Google Scholar 

  27. D. Er, H. Ye, N. C. Frey, H. Kumar, J. Lou, and V. B. Shenoy, Prediction of enhanced catalytic activity for hydrogen evolution reaction in janus transition metal dichalcogenides, Nano Lett. 18(6), 3943 (2018)

    Article  ADS  Google Scholar 

  28. A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)

    Article  Google Scholar 

  29. P. Rivera, H. Yu, K. L. Seyler, N. P. Wilson, W. Yao, and X. Xu, Interlayer valley excitons in heterobilayers of transition metal dichalcogenides, Nat. Nanotechnol. 13(11), 1004 (2018)

    Article  ADS  Google Scholar 

  30. S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P. S. Schmidt, N. F. Hinsche, M. N. Gjerding, D. Torelli, P. M. Larsen, and A. C. Riis-Jensen, The computational 2D materials database: High-throughput modeling and discovery of atomically thin crystals, 2D Mater. 5, 042022 (2018)

    Article  Google Scholar 

  31. K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices, Nat. Nanotechnol. 8(11), 826 (2013)

    Article  ADS  Google Scholar 

  32. M. Bernardi, M. Palummo, and J. C. Grossman, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials, Nano Lett. 13(8), 3664 (2013)

    Article  ADS  Google Scholar 

  33. Z. Zhou, X. Niu, Y. Zhang, and J. Wang, Janus MoSSe/WSeTe heterostructures: a direct Z-scheme photocatalyst for hydrogen evolution, J. Mater. Chem. A 7(38), 21835 (2019)

    Article  Google Scholar 

  34. K. Maeda, Z-scheme water splitting using two different semiconductor photocatalysts, ACS Catal. 3(7), 1486 (2013)

    Article  Google Scholar 

  35. W. Hu and J. Yang, First-principles study of two-dimensional van der Waals heterojunctions, Comput. Mater. Sci. 112, 518 (2016)

    Article  Google Scholar 

  36. J. Liu and E. Hua, High photocatalytic activity of heptazine-based g-C3N4/SnS2 heterojunction and its origin: insights from hybrid DFT, J. Phys. Chem. C 121(46), 25827 (2017)

    Article  Google Scholar 

  37. J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functional based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)

    Article  ADS  Google Scholar 

  38. J. Heyd, G. E. Scuseria, and M. Ernzerhof, Erratum: Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 124(21), 219906 (2006) (J. Chem. Phys. 118, 8207 (2003))

    Article  ADS  Google Scholar 

  39. A. Kahn, Fermi level, work function and vacuum level, Mater. Horiz. 3(1), 7 (2016)

    Article  Google Scholar 

  40. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  41. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)

    Article  Google Scholar 

  42. M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and B. I. Lundqvist, van der Waals density functional for general geometries, Phys. Rev. Lett. 92(24), 246401 (2004)

    Article  ADS  Google Scholar 

  43. M. Jourshabani, B. K. Lee, and Z. Shariatinia, From traditional strategies to Z-scheme configuration in graphitic carbon nitride photocatalysts: Recent progress and future challenges, Appl. Catal. B 276, 119157 (2020)

    Article  Google Scholar 

  44. P. Zhou, J. Yu, and M. Jaroniec, All-solid-state Z-scheme photocatalytic systems, Adv. Mater. 26(29), 4920 (2014)

    Article  Google Scholar 

  45. Y. Tachibana, L. Vayssieres, and J. R. Durrant, Artificial photosynthesis for solar water-splitting, Nat. Photonics 6(8), 511 (2012)

    Article  ADS  Google Scholar 

  46. S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z. X. Guo, and J. Tang, Visible-light driven heterojunction photocatalysts for water splitting — a critical review, Energy Environ. Sci. 8(3), 731 (2015)

    Article  Google Scholar 

  47. J. K. Hyun, S. Zhang, and L. J. Lauhon, Nanowire heterostructures, Annu. Rev. Mater. Res. 43(1), 451 (2013)

    Article  ADS  Google Scholar 

  48. J. Fu, Q. Xu, J. Low, C. Jiang, and J. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst, Appl. Catal. B 243, 556 (2019)

    Article  Google Scholar 

  49. T. Su, Q. Shao, Z. Qin, Z. Guo, and Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting, ACS Catal. 8(3), 2253 (2018)

    Article  Google Scholar 

  50. Q. L. Xu, L. Y. Zhang, J. G. Yu, S. Wageh, A. A. Al-Ghamdi, and M. Jaroniec, Direct Z-scheme photocatalysts: Principles, synthesis, and applications, Mater. Today 21(10), 1042 (2018)

    Article  Google Scholar 

  51. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, Engineering heterogeneous semiconductors for solar water splitting, J. Mater. Chem. A 3(6), 2485 (2015)

    Article  Google Scholar 

  52. X. Chen, S. Shen, L. Guo, and S. S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev. 110(11), 6503 (2010)

    Article  Google Scholar 

  53. Z. Sun, N. Talreja, H. Tao, J. Texter, M. Muhler, J. Strunk, and J. Chen, Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges, Angew. Chem. Int. Ed. 57(26), 7610 (2018)

    Article  Google Scholar 

  54. K. Ren, W. Tang, M. Sun, Y. Cai, Y. Cheng, and G. Zhang, A direct Z-scheme PtS2/arsenene van der Waals heterostructure with high photocatalytic water splitting efficiency, Nanoscale 12(33), 17281 (2020)

    Article  Google Scholar 

  55. I. Man, H. Su, F. Calle-Vallejo, H. Hansen, J. Martinez, N. Inoglu, J. Kitchin, T. Jaramillo, J. Norskov, and J. Rossmeisl, Universality in oxygen evolution electrocatalysis on oxide surfaces, ChemCatChem 3(7), 1159 (2011)

    Article  Google Scholar 

  56. R. Zhang, L. Zhang, Q. Zheng, P. Gao, J. Zhao, and J. Yang, Direct Z-scheme water splitting photocatalyst based on two-dimensional van der Waals heterostructures, J. Phys. Chem. Lett. 9(18), 5419 (2018)

    Article  Google Scholar 

  57. X. Niu, X. Bai, Z. Zhou, and J. Wang, Rational design and characterization of direct Z-scheme photocatalyst for overall water splitting from excited state dynamics simulations, ACS Catal. 10(3), 1976 (2020)

    Article  Google Scholar 

  58. C. Jin, E. Y. Ma, O. Karni, E. C. Regan, F. Wang, and T. F. Heinz, Ultrafast dynamics in van der Waals heterostructures, Nat. Nanotechnol. 13(11), 994 (2018)

    Article  ADS  Google Scholar 

  59. R. Long and O. V. Prezhdo, Quantum coherence facilitates efficient charge separation at a MOS2 / MoSe2 van der Waals junction, Nano Lett. 16(3), 1996 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2017YFA0204800), the National Natural Science Foundation of China (Nos. 22033002, 21525311, and 21973011), and the Scientific Research Foundation of Graduate School of Southeast University (No. YBPY1968).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shijun Yuan or Jinlan Wang.

Additional information

Special Topic: Heterojunction and Its Applications (Ed. Chenghua Sun). This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1054-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Yuan, S. & Wang, J. Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures. Front. Phys. 16, 43203 (2021). https://doi.org/10.1007/s11467-021-1054-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1054-0

Keywords

Navigation