Skip to main content
Log in

Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Simulation of open quantum dynamics for various Hamiltonians and spectral densities are ubiquitous for studying various quantum systems. On a quantum computer, only log2N qubits are required for the simulation of an N-dimensional quantum system, hence simulation in a quantum computer can greatly reduce the computational complexity compared with classical methods. Recently, a quantum simulation approach was proposed for studying photosynthetic light harvesting [npj Quantum Inf. 4, 52 (2018)]. In this paper, we apply the approach to simulate the open quantum dynamics of various photosynthetic systems. We show that for Drude—Lorentz spectral density, the dimerized geometries with strong couplings within the donor and acceptor clusters respectively exhibit significantly improved efficiency. We also demonstrate that the overall energy transfer can be optimized when the energy gap between the donor and acceptor clusters matches the optimum of the spectral density. The effects of different types of baths, e.g., Ohmic, sub-Ohmic, and super-Ohmic spectral densities are also studied. The present investigations demonstrate that the proposed approach is universal for simulating the exact quantum dynamics of photosynthetic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Fleming and R. Grondelle, The primary steps of photosynthesis, Phys. Today 47(2), 48 (1994)

    Article  Google Scholar 

  2. Y. C. Cheng and G. R. Fleming, Dynamics of light harvesting in photosynthesis, Annu. Rev. Phys. Chem. 60(1), 241 (2009)

    Article  ADS  Google Scholar 

  3. M. J. Tao, N. N. Zhang, P. Y. Wen, F. G. Deng, Q. Ai, and G. L. Long, Coherent and incoherent theories for photosynthetic energy transfer, Sci. Bull. (Beijing) 65(4), 318 (2020)

    Article  ADS  Google Scholar 

  4. M. J. Tao, M. Hua, N. N. Zhang, W. T. He, Q. Ai, and F. G. Deng, Quantum simulation of clustered photosynthetic light harvesting in a superconducting quantum circuit, Quantum Eng. 2(3), e53 (2020)

    Article  Google Scholar 

  5. N. Lambert, Y. N. Chen, Y. C. Cheng, C. M. Li, G. Y. Chen, and F. Nori, Quantum biology, Nat. Phys. 9(1), 10 (2013)

    Article  Google Scholar 

  6. J. S. Cao, R. J. Cogdell, D. F. Coker, H. G. Duan, J. Hauer, U. Kleinekathöfer, T. L. C. Jansen, T. Mančal, R. J. D. Miller, J. P. Ogilvie, V. I. Prokhorenko, T. Renger, H. S. Tan, R. Tempelaar, M. Thorwart, E. Thyrhaug, S. Westenhoff, and D. Zigmantas, Quantum biology revisited, Sci. Adv. 6(14), eaaz4888 (2020)

    Article  ADS  Google Scholar 

  7. G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mančal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems, Nature 446(7137), 782 (2007)

    Article  ADS  Google Scholar 

  8. H. Lee, Y. C. Cheng, and G. R. Fleming, Coherence dynamics in photosynthesis: Protein protection of excitonic coherence, Science 316(5830), 1462 (2007)

    Article  ADS  Google Scholar 

  9. P. G. Wolynes, Some quantum weirdness in physiology, Proc. Natl. Acad. Sci. USA 106(41), 17247 (2009)

    Article  ADS  Google Scholar 

  10. E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, Coherently wired lightharvesting in photosynthetic marine algae at ambient temperature, Nature 463(7281), 644 (2010)

    Article  ADS  Google Scholar 

  11. R. Hildner, D. Brinks, J. B. Nieder, R. J. Cogdell, and N. F. van Hulst, Quantum coherent energy transfer over varying pathways in single light-harvesting complexes, Science 340(6139), 1448 (2013)

    Article  ADS  Google Scholar 

  12. M. J. Tao, Q. Ai, F. G. Deng, and Y. C. Cheng, Proposal for probing energy transfer pathway by single-molecule pump-dump experiment, Sci. Rep. 6(1), 27535 (2016)

    Article  ADS  Google Scholar 

  13. L. G. Mourokh and F. Nori, Energy transfer efficiency in the chromophore network strongly coupled to a vibrational mode, Phys. Rev. E 92(5), 052720 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  14. H. P. Breuer, E. M. Laine, J. Piilo, and B. Vacchini, Non-Markovian dynamics in open quantum systems, Rev. Mod. Phys. 88(2), 021002 (2016)

    Article  ADS  Google Scholar 

  15. I. de Vega and D. Alonso, Dynamics of non-Markovian open quantum systems, Rev. Mod. Phys. 89(1), 015001 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  16. L. Li, M. J. W. Hall, and H. M. Wiseman, Concepts of quantum non-Markovianity: A hierarchy, Phys. Rep. 759, 1 (2018)

    Google Scholar 

  17. H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, New York, 2007

    Book  MATH  Google Scholar 

  18. A. Ishizaki and G. R. Fleming, On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer, J. Chem. Phys. 130(23), 234110 (2009)

    Article  ADS  Google Scholar 

  19. G. Watanabe, Heat engines using small quantum systems, AAPPS Bull. 29, 30 (2019)

    Google Scholar 

  20. J. X. Zhao, J. J. Cheng, Y. Q. Chu, Y. X. Wang, F. G. Deng, and Q. Ai, Hyperbolic metamaterial using chiral molecules, Sci. China Phys. Mech. Astron. 63(6), 260311 (2020)

    Article  ADS  Google Scholar 

  21. Y. Tanimura, Stochastic Liouville, Langevin, Fokker-Planck, and master equation approaches to quantum dis-sipative systems, J. Phys. Soc. Jpn. 75(8), 082001 (2006)

    Article  ADS  Google Scholar 

  22. A. Ishizaki and G. R. Fleming, Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equation approach, J. Chem. Phys. 130(23), 234111 (2009)

    Article  ADS  Google Scholar 

  23. Y. Yan, F. Yan, Y. Liu, and J. Shao, Hierarchical approach based on stochastic decoupling to dissipative systems, Chem. Phys. Lett. 395(4–6), 216 (2004)

    Article  ADS  Google Scholar 

  24. Y. Zhou, Y. Yan, and J. Shao, Stochastic simulation of quantum dissipative dynamics, Europhys. Lett. 72(3), 334 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Shao, Decoupling quantum dissipation interaction via stochastic fields, J. Chem. Phys. 120(11), 5053 (2004)

    Article  ADS  Google Scholar 

  26. Z. F. Tang, X. L. Ouyang, Z. H. Gong, H. B. Wang, and J. L. Wu, Extended hierarchy equation of motion for the spin-boson model, J. Chem. Phys. 143(22), 224112 (2015)

    Article  ADS  Google Scholar 

  27. H. Liu, L. L. Zhu, S. M. Bai, and Q. Shi, Reduced quantum dynamics with arbitrary bath spectral densities: Hierarchical equations of motion based on several different bath decomposition schemes, J. Chem. Phys. 140(13), 134106 (2014)

    Article  ADS  Google Scholar 

  28. M. Schröder, M. Schreiber, and U. Kleinekathöfer, Reduced dynamics of coupled harmonic and anharmonic oscillators using higherorder perturbation theory, J. Chem. Phys. 126(11), 114102 (2007)

    Article  ADS  Google Scholar 

  29. A. Olaya-Castro, C. F. Lee, F. F. Olsen, and N. F. Johnson, Efficiency of energy transfer in a light-harvesting system under quantum coherence, Phys. Rev. B 78(8), 085115 (2008)

    Article  ADS  Google Scholar 

  30. Q. Ai, Y. J. Fan, B. Y. Jin, and Y. C. Cheng, An efficient quantum jump method for coherent energy transfer dynamics in photosynthetic systems under the influence of laser fields, New J. Phys. 16(5), 053033 (2014)

    Article  ADS  Google Scholar 

  31. S. Jang, Y. C. Cheng, D. R. Reichman, and J. D. Eaves, Theory of coherent resonance energy transfer, J. Chem. Phys. 129(10), 101104 (2008)

    Article  ADS  Google Scholar 

  32. M. Yang and G. R. Fleming, Influence of phonons on exciton transfer dynamics: Comparison of the Redfield, F rster, and modified Redfield equations, Chem. Phys. 282(1), 163 (2002)

    Article  Google Scholar 

  33. Y. H. Hwang-Fu, W. Chen, and Y. C. Cheng, A coherent modified Redfield theory for excitation energy transfer in molecular aggregates, Chem. Phys. 447, 46 (2015)

    Article  Google Scholar 

  34. H. Dong, D. Z. Xu, J. F. Huang, and C. P. Sun, Coherent excitation transfer via the dark-state channel in a bionic system, Light Sci. Appl. 1(3), e2 (2012)

    Article  Google Scholar 

  35. S. Mostarda, F. Levi, D. Prada-Gracia, F. Mintert, and F. Rao, Structure-dynamics relationship in coherent transport through disordered systems, Nat. Commun. 4(1), 2296 (2013)

    Article  ADS  Google Scholar 

  36. G. C. Knee, P. Rowe, L. D. Smith, A. Troisi, and A. Datta, Structure-dynamics relation in physically-plausible multi-chromophore systems, J. Phys. Chem. Lett. 8(10), 2328 (2017)

    Article  Google Scholar 

  37. T. Zech, R. Mulet, T. Wellens, and A. Buchleitner, Centrosymmetry enhances quantum transport in disordered molecular networks, New J. Phys. 16(5), 055002 (2014)

    Article  ADS  Google Scholar 

  38. L. Xu, Z. R. Gong, M. J. Tao, and Q. Ai, Artificial light harvesting by dimerized Möbius ring, Phys. Rev. E 97(4), 042124 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  39. Y. H. Lui, B. Zhang, and S. Hu, Rational design of photoelectrodes for photoelectrochemical water splitting and CO2 reduction, Front. Phys. 14(5), 53402 (2019)

    Article  ADS  Google Scholar 

  40. L. Ju, M. Bie, X. Zhang, X. Chen, and L. Kou, Two-dimensional Janus van der Waals heterojunctions: A review of recent research progresses, Front. Phys. 16(1), 13201 (2021)

    Article  ADS  Google Scholar 

  41. B. X. Wang, M. J. Tao, Q. Ai, T. Xin, N. Lambert, D. Ruan, Y. C. Cheng, F. Nori, F. G. Deng, and G. L. Long, Efficient quantum simulation of photosynthetic light harvesting, npj Quantum Inf. 4, 52 (2018)

    Article  ADS  Google Scholar 

  42. Q. Ai, T. C. Yen, B. Y. Jin, and Y. C. Cheng, Clustered geometries exploiting quantum coherence effects for efficient energy transfer in light harvesting, J. Phys. Chem. Lett. 4(15), 2577 (2013)

    Article  Google Scholar 

  43. Q. Shi, L. Chen, G. Nan, R. X. Xu, and Y. J. Yan, Efficient hierarchical liouville space propagetor to quantum dissipative dynamics, J. Chem. Phys. 130(8), 084105 (2009)

    Article  ADS  Google Scholar 

  44. I. Buluta and F. Nori, Quantum simulators, Science 326(5949), 108 (2009)

    Article  ADS  Google Scholar 

  45. I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86(1), 153 (2014)

    Article  ADS  Google Scholar 

  46. J. Xu, S. Li, T. Chen, and Z.Y. Xue, Nonadiabatic geometric quantum computation with optimal control on superconducting circuits, Front. Phys. 15(4), 41503 (2020)

    Article  ADS  Google Scholar 

  47. Z. D. Ye, D. Pan, Z. Sun, C. G. Du, L. G. Yin, and G. L. Long, Generic security analysis framework for quantum secure direct communication, Front. Phys. 16(2), 21503 (2021)

    Article  ADS  Google Scholar 

  48. Y. F. Yan, L. Zhou, W. Zhong, and Y. B. Sheng, Measurementdevice-independent quantum key distribution of multiple degrees of freedom of a single photon, Front. Phys. 16(1), 11501 (2021)

    Article  ADS  Google Scholar 

  49. M. Rey, A. W. Chin, S. F. Huelga, and M. B. Plenio, Exploiting structured environments for efficient energy transfer: The phonon antenna mechanism, J. Phys. Chem. Lett. 4(6), 903 (2013)

    Article  Google Scholar 

  50. D. J. Gorman, B. Hemmerling, E. Megidish, S. A. Moeller, P. Schindler, M. Sarovar, and H. Haeffner, Engineering vibrationally assisted energy transfer in a trapped-ion quantum simulator, Phys. Rev. X 8(1), 011038 (2018)

    Google Scholar 

  51. Y. Chang and Y. C. Cheng, On the accuracy of coherent modified Redfield theory in simulating excitation energy transfer dynamics, J. Chem. Phys. 142(3), 034109 (2015)

    Article  ADS  Google Scholar 

  52. C. Meier and D. J. Tannor, Non-Markovian evolution of the density operator in the presence of strong laser fields, J. Chem. Phys. 111(8), 3365 (1999)

    Article  ADS  Google Scholar 

  53. A. Soare, H. Ball, D. Hayes, J. Sastrawan, M. C. Jarratt, J. J. McLoughlin, X. Zhen, T. J. Green, and M. J. Biercuk, Experimental noise filtering by quantum control, Nat. Phys. 10(11), 825 (2014)

    Article  Google Scholar 

  54. A. Soare, H. Ball, D. Hayes, X. Zhen, M. C. Jarratt, J. Sastrawan, H. Uys, and M. J. Biercuk, Experimental bath engineering for quantitative studies of quantum control, Phys. Rev. A 89(4), 042329 (2014)

    Article  ADS  Google Scholar 

  55. N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms, J. Magn. Reson. 172(2), 296 (2005)

    Article  ADS  Google Scholar 

  56. J. Li, X. D. Yang, X. H. Peng, and C. P. Sun, Hybrid quantum-classical approach to quantum optimal control, Phys. Rev. Lett. 118(15), 150503 (2017)

    Article  ADS  Google Scholar 

  57. P. Fulde, Wavefunctions for extended electron systems, AAPPS Bull. 29, 50 (2019)

    Google Scholar 

  58. L. Valkunas, D. Abramavicius, and T. Mančal, Molecular Excitation Dynamics and Relaxation: Quantum Theory and Spectroscopy, Wiley-VCH, Weinheim, Germany, 2013

    Book  Google Scholar 

  59. A. Ishizaki, and G. R. Fleming, Theoretical examination of quantum coherence in a photosythetic system at physiological temperature, Proc. Natl. Acad. Sci. USA 106(41), 17255 (2009)

    Article  ADS  Google Scholar 

  60. W. Jiang, F. Z. Wu, and G. J. Yang, Non-Markovian entanglement dynamics of open quantum systems with continuous measurement feedback, Phys. Rev. A 98(5), 052134 (2018)

    Article  ADS  Google Scholar 

  61. X. L. Zhen, F. H. Zhang, G. Y. Feng, L. Hang, and G. L. Long, Optimal experimental dynamical decoupling of both longitudinal and transverse relaxations, Phys. Rev. A 93(2), 022304 (2016)

    Article  ADS  Google Scholar 

  62. Y. H. Ma, H. Dong, H. T. Quan, and C. P. Sun, The uniqueness of the integration factor associated with the exchanged heat in thermodynamics, Fundamental Research 1(1), 6 (2021)

    Article  Google Scholar 

  63. A. J. Leggett, S. Chakravarty, A. Dorsey, M. Fisher, A. Garg, and W. Zwerger, Dynamics of the dissipative twostate system, Rev. Mod. Phys. 59(1), 1 (1987)

    Article  ADS  Google Scholar 

  64. U. Weiss, Quantum Dissipative Systems, World Scientific, Singapore, 2008

    Book  MATH  Google Scholar 

  65. A. W. Chin, S. F. Huelga, and M. B. Plenio, Quantum metrology in non-Markovian environments, Phys. Rev. Lett. 109(23), 233601 (2012)

    Article  ADS  Google Scholar 

  66. H. G. Duan, V. I. Prokhorenko, E. Wientjes, R. Croce, M. Thorwart, and R. J. D. Miller, Primary charge separation in the photosystem II reaction center revealed by a global analysis of the two-dimensional electronic spectra, Sci. Rep. 7(1), 12347 (2017)

    Article  ADS  Google Scholar 

  67. K. L. M. Lewis, F. D. Fuller, J. A. Myers, C. F. Yocum, D. Abramavicius, and J. P. Ogilvie, Simulations of the two-dimensional electronic spectroscopy of the photosystem II reaction center, J. Phys. Chem. A 117(1), 34 (2013)

    Article  Google Scholar 

  68. L. Zhang, D. A. Silva, H. D. Zhang, A. Yue, Y. J. Yan, and X. H. Huang, Dynamic protein conformations preferentially drive energy transfer along the active chain of the photosystem II reaction centre, Nat. Commun. 5(1), 4170 (2014)

    Article  ADS  Google Scholar 

  69. H. Robbins, A remark on Stirling’s formula, Am. Math. Mon. 62, 26 (1955)

    MathSciNet  MATH  Google Scholar 

  70. V. I. Novoderezhkin, M. A. Palacios, H. van Amerongen, and R. van Grondelle, Energy-transfer dynamics in the LHCII complex of higher plants: Modified Redfield approach, J. Phys. Chem. B 108(29), 10363 (2004)

    Article  Google Scholar 

  71. J. W. Goodman, Statistical Optics, 2nd Ed., Wiley, Hoboken, NJ, 2015

    Google Scholar 

  72. D. W. Lu, N. Y. Xu, R. X. Xu, H. W. Chen, J. B. Gong, X. H. Peng, and J. F. Du, Simulation of chemical isomerization reaction dynamics on a NMR quantum simulator, Phys. Rev. Lett. 107(2), 020501 (2011)

    Article  ADS  Google Scholar 

  73. I. L. Chuang, L. M. K. Vandersypen, X. L. Zhou, D. W. Leung, and S. Lloyd, Experimental realization of a quantum algorithm, Nature 393(6681), 143 (1998)

    Article  ADS  Google Scholar 

  74. L. M. K. Vandersypen and I. Chuang, NMR techniques for quantum control and computation, Rev. Mod. Phys. 76(4), 1037 (2005)

    Article  ADS  Google Scholar 

  75. E. Knill, I. Chuang, and R. Laflamme, Effective pure states for bulk quantum computation, Phys. Rev. A 57(5), 3348 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  76. D. G. Cory, M. D. Price, and T. F. Havel, Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing, Physica D 120(1–2), 82 (1998)

    Article  ADS  Google Scholar 

  77. J. S. Lee, The quantum state tomography on an NMR system, Phys. Lett. A 305(6), 349 (2002)

    Article  MATH  ADS  Google Scholar 

  78. D. W. Lu, T. Xin, N. K. Yu, Z. F. Ji, J. X. Chen, G. L. Long, J. Baugh, X. H. Peng, B. Zeng, and R. Laflamme, Tomography is necessary for universal entanglement detection with single-copy observables, Phys. Rev. Lett. 116(23), 230501 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  79. T. Xin, D. W. Lu, J. Klassen, N. K. Yu, Z. F. Ji, J. X. Chen, X. Ma, G. L. Long, B. Zeng, and R. Laflamme, Quantum state tomography via reduced density matrices, Phys. Rev. Lett. 118(2), 020401 (2017)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

We thank the kind guidance from Yuan-Chung Cheng. We thank the critical comments from J.-S. Shao, and valuable discussions with B. X. Wang and J. W. Wen. This work was supported by the National Natural Science Foundation of China under Grant Nos. 11674033, 11474026, and 11505007, and Beijing Natural Science Foundation under Grant No. 1202017. N. L. acknowledges partial support from JST PRESTO through Grant No. JPMJPR18GC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Ai  (艾清).

Additional information

arXiv: 2007.02303. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1064-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, NN., Tao, MJ., He, WT. et al. Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities. Front. Phys. 16, 51501 (2021). https://doi.org/10.1007/s11467-021-1064-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1064-y

Keywords

Navigation