Skip to main content
Log in

Smart grid cyber-physical systems: communication technologies, standards and challenges

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The recent developments in embedded system design and communication technologies popularized the adaption of the cyber-physical system (CPS) for practical applications. A CPS is an amalgamation of a physical system, a cyber system, and their communication network. The cyber system performs extensive computational operations on the data received from the physical devices, interprets the data, and initiates effective control actions in real-time. One such CPS is the smart grid CPS (SG-CPS) consisting of physical devices with diverse communication requirements, and intermediate communication networks. Thus, reliable communication networks are paramount for the effective operation of the SG-CPS. This paper is an elaborate survey on the communication networks from the perspective of the SG-CPS. This paper presents the state-of-art communication technologies that can meet the communication requirements of the various SG-CPS applications. The communications standards and communication protocols are also comprehensively discussed. A systematic mapping among communication technologies, standards, and protocols for various SG-CPS applications has been presented based on an extensive literature survey in this paper. Furthermore, several challenges, such as security, safety, reliability and resilience, etc., have been addressed from SG-CPS’s perspective. This work also identifies the research gaps in the various domains of the SG-CPS that can be of immense benefit to the research community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jirkovský, V., Obitko, M., Kadera, P., & Mařík, V. (2018). Toward plug play cyber-physical system components. IEEE Transactions on Industrial Informatics, 14(6), 2803–2811.

    Article  Google Scholar 

  2. Zhou, Y., Yu, F. R., Chen, J., & Kuo, Y. (2020). Cyber-physical-social systems: A state-of-the-art survey, challenges and opportunities. IEEE Communications Surveys Tutorials, 22(1), 389–425.

    Article  Google Scholar 

  3. Yu, X., & Xue, Y. (2016). Smart grids: A cyber-physical systems perspective. Proceedings of the IEEE, 104(5), 1058–1070.

    Article  Google Scholar 

  4. Serpanos, D. (2018). The cyber-physical systems revolution. Computer, 51(3), 70–73.

    Article  Google Scholar 

  5. Leitão, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., & Colombo, A. W. (2016). Smart agents in industrial cyber-physical systems. Proceedings of the IEEE, 104(5), 1086–1101.

    Article  Google Scholar 

  6. Harvey, M. J., Liu, X., & Chow, J. Y. J. (2016). A tablet-based surrogate system architecture for “in-situ’’ evaluation of cyber-physical transport technologies. IEEE Intelligent Transportation Systems Magazine, 8(4), 79–91.

    Article  Google Scholar 

  7. Tang, J., Ibrahim, M., & Chakrabarty, K. (2019). Randomized checkpoints: A practical defense for cyber-physical microfluidic systems. IEEE Design Test, 36(1), 5–13.

    Article  Google Scholar 

  8. Watteyne, T., Handziski, V., Vilajosana, X., Duquennoy, S., Hahm, O., Baccelli, E., & Wolisz, A. (2016). Industrial wireless ip-based cyber -physical systems. Proceedings of the IEEE, 104(5), 1025–1038.

    Article  Google Scholar 

  9. Rajabi Shishvan, O., Zois, D., & Soyata, T. (2018). Machine intelligence in healthcare and medical cyber physical systems: A survey. IEEE Access, 6, 46-419-46–494.

    Article  Google Scholar 

  10. Kim, S., Won, Y., Park, I., Eun, Y., & Park, K. (2019). Cyber-physical vulnerability analysis of communication-based train control. IEEE Internet of Things Journal, 6(4), 6353–6362.

    Article  Google Scholar 

  11. Ernst, R. (2018). Automated driving: The cyber-physical perspective. Computer, 51(9), 76–79.

    Article  Google Scholar 

  12. Moness, M., & Moustafa, A. M. (2016). A survey of cyber-physical advances and challenges of wind energy conversion systems: Prospects for internet of energy. IEEE Internet of Things Journal, 3(2), 134–145.

    Article  Google Scholar 

  13. Jia, D., Lu, K., Wang, J., Zhang, X., & Shen, X. (2016). A survey on platoon-based vehicular cyber-physical systems. IEEE Communications Surveys Tutorials, 18(1), 263–284.

    Article  Google Scholar 

  14. Atat, R., Liu, L., Wu, J., Li, G., Ye, C., & Yang, Y. (2018). Big data meet cyber-physical systems: A panoramic survey. IEEE Access, 6, 73 603-73 636.

    Article  Google Scholar 

  15. Rossi, B., & Chren, S. (2020). Smart grids data analysis: A systematic mapping study. IEEE Transactions on Industrial Informatics, 16(6), 3619–3639.

    Article  Google Scholar 

  16. Xu, H., Yu, W., Griffith, D., & Golmie, N. (2018). A survey on industrial internet of things: A cyber-physical systems perspective. IEEE Access, 6, 78 238-78 259.

    Article  Google Scholar 

  17. Yang, C., Zhabelova, G., Yang, C., & Vyatkin, V. (2013). Cosimulation environment for event-driven distributed controls of smart grid. IEEE Transactions on Industrial Informatics, 9(3), 1423–1435.

    Article  Google Scholar 

  18. He, H., & Yan, J. (2016). Cyber-physical attacks and defences in the smart grid: a survey. IET Cyber-Physical Systems: Theory Applications, 1(1), 13–27.

    Article  Google Scholar 

  19. Wang, W., Xu, Y., & Khanna, M. (2011). A survey on the communication architectures in smart grid. Computer Networks, 55(15), 3604–3629.

    Article  Google Scholar 

  20. Yan, Y., Qian, Y., Sharif, H., & Tipper, D. (2013). A survey on smart grid communication infrastructures: Motivations, requirements and challenges. IEEE Communications Surveys Tutorials, 15(1), 5–20.

    Article  Google Scholar 

  21. Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., & Hancke, G. P. (2013). A survey on smart grid potential applications and communication requirements. IEEE Transactions on Industrial Informatics, 9(1), 28–42.

    Article  Google Scholar 

  22. Rohjans, S., Uslar, M., Bleiker, R., González, J., Specht, M., Suding, T., & Weidelt, T. (2010). Survey of smart grid standardization studies and recommendations. First IEEE International Conference on Smart Grid Communications, 2010, 583–588.

    Google Scholar 

  23. Bian, D., Kuzlu, M., Pipattanasomporn, M., Rahman, S., & Shi, D. (2019). Performance evaluation of communication technologies and network structure for smart grid applications. IET Communications, 13(8), 1025–1033.

    Article  Google Scholar 

  24. Palensky, P., Widl, E., & Elsheikh, A. (2014). Simulating cyber-physical energy systems: Challenges, tools and methods. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(3), 318–326.

    Article  Google Scholar 

  25. Poudel, S., Ni, Z., & Malla, N. (2017). Real-time cyber physical system testbed for power system security and control. International Journal of Electrical Power & Energy Systems, 90, 124–133.

    Article  Google Scholar 

  26. Holm, H., Karresand, M., Vidström, A., & Westring, E. (2015). A survey of industrial control system testbeds. In S. Buchegger & M. Dam (Eds.), Secure IT systems (pp. 11–26). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  27. Hossain, E., Kabalci, E., Bayindir, R., & Perez, R. (2014). Microgrid testbeds around the world: State of art. Energy Conversion and Management, 86, 132–153.

    Article  Google Scholar 

  28. Sun, C.-C., Liu, C.-C., & Xie, J. (2016). Cyber-physical system security of a power grid: State-of-the-art. Electronics, 5, 2–18.

    Article  Google Scholar 

  29. Li, F., Shi, Y., Shinde, A., Ye, J., & Song, W. (2019). Enhanced cyber-physical security in internet of things through energy auditing. IEEE Internet of Things Journal, 6(3), 5224–5231.

    Article  Google Scholar 

  30. Liu, J., Xiao, Y., Li, S., Liang, W., & Chen, C. L. P. (2012). Cyber security and privacy issues in smart grids. IEEE Communications Surveys Tutorials, 14(4), 981–997.

    Article  Google Scholar 

  31. Giraldo, J., Sarkar, E., Cardenas, A. A., Maniatakos, M., & Kantarcioglu, M. (2017). Security and privacy in cyber-physical systems: A survey of surveys. IEEE Design & Test, 34(4), 7–17.

    Article  Google Scholar 

  32. Tan, S., De, D., Song, W., Yang, J., & Das, S. K. (2017). Survey of security advances in smart grid: A data driven approach. IEEE Communications Surveys Tutorials, 19(1), 397–422.

    Article  Google Scholar 

  33. Kumar, P., Lin, Y., Bai, G., Paverd, A., Dong, J. S., & Martin, A. (2019). Smart grid metering networks: A survey on security, privacy and open research issues. IEEE Communications Surveys Tutorials, 21(3), 2886–2927.

    Article  Google Scholar 

  34. Jawurek, M., Kerschbaum, F., & Danezis, G. (2012). SoK: Privacy technologies for smart grids-a survey of options. Cambridge: Microsoft Res.

    Google Scholar 

  35. Tuinema, B. W., Rueda Torres, J. L., Stefanov, A. I., Gonzalez-Longatt, F. M., & van der Meijden, M. A. M. M. (2020). Cyber-physical system modeling for assessment and enhancement of power grid cyber security, resilience, and reliability (pp. 237–270). Cham: Springer International Publishing.

    Google Scholar 

  36. Zhu, Q. (2019). Multilayer cyber-physical security and resilience for smart grid (pp. 225–239). Cham: Springer International Publishing.

    Google Scholar 

  37. Xu, S., Qian, Y., & Hu, R. Q. (2015). On reliability of smart grid neighborhood area networks. IEEE Access, 3, 2352–2365.

    Article  Google Scholar 

  38. Ye, F., Qian, Y., Hu, R. Q., & Das, S. K. (2015). Reliable energy-efficient uplink transmission for neighborhood area networks in smart grid. IEEE Transactions on Smart Grid, 6(5), 2179–2188.

    Article  Google Scholar 

  39. Li, Y., Yin, X., Wang, Z., Yao, J., Shi, X., Wu, J., et al. (2019). A survey on network verification and testing with formal methods: Approaches and challenges. IEEE Communications Surveys Tutorials, 21(1), 940–969.

    Article  Google Scholar 

  40. Haggi, H., nejad, R. R., Song, M., & Sun, W. (2019). “A review of smart grid restoration to enhance cyber-physical system resilience,” In 2019 IEEE innovative smart grid technologies - Asia (ISGT Asia), pp. 4008–4013.

  41. Cheng, Z., & Chow, M. (2020). “Resilient collaborative distributed energy management system framework for cyber-physical dc microgrids,” IEEE transactions on smart Grid, pp. 1.

  42. Monostori, L. (2014). “Cyber-physical production systems: Roots, expectations and R&D challenges,” Procedia CIRP, vol. 17, pp. 9 – 13, variety Management in Manufacturing.

  43. Karnouskos, S., Colombo, A. W., Bangemann, T., Manninen, K., Camp, R., Tilly, M., Stluka, P. Jammes, F., Delsing, J., & Eliasson, J. (2012). “A SOA-based architecture for empowering future collaborative cloud-based industrial automation,” In IECON 2012 - 38th annual conference on IEEE industrial electronics society, pp. 5766–5772.

  44. Zhao, J., Wen, F., Xue, Y., Li, X., & Dong, Z. (2010). Cyber-physical power systems: Architecture, implementation techniques and challenges. Chinese Automation of Electric Power Systems, 34(16), 1–7.

    Google Scholar 

  45. Deep Singh, K., & Sood, K. (2020). 5g ready optical fog-assisted cyber-physical system for iot applications. IET Cyber-Physical Systems: Theory Applications, 5(2), 137–144.

    Article  Google Scholar 

  46. Shahid, A. (2016). Cyber-physical modeling and control of smart grids - a new paradigm. IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), 2016, 1–5.

    Google Scholar 

  47. Karnouskos, S. (2011). “Cyber-physical systems in the smartgrid,” In 2011 9th IEEE international conference on industrial informatics, pp. 20–23.

  48. Lee, E. A. (2008). “Cyber physical systems: Design challenges,” In 2008 11th IEEE international symposium on object and component-oriented real-time distributed computing (ISORC), pp. 363–369.

  49. Wan, Y., Cao, J., Zhang, S., Tu, G., Lu, C., Xu, X., & Li, K. (2014). An integrated cyber-physical simulation environment for smart grid applications. Tsinghua Science and Technology, 19(2), 133–143.

    Article  Google Scholar 

  50. Lin, Hua, Sambamoorthy, S., Shukla, S., Thorp, J., & Mili, L. (2011). Power system and communication network co-simulation for smart grid applications. ISGT, 2011, 1–6.

    Google Scholar 

  51. Li, H., Lai, L., & Poor, H. V. (2012). Multicast routing for decentralized control of cyber physical systems with an application in smart grid. IEEE Journal on Selected Areas in Communications, 30(6), 1097–1107.

    Article  Google Scholar 

  52. Ilić, M. D., Xie, L., Khan, U. A., & Moura, J. M. F. (2010). Modeling of future cyber-physical energy systems for distributed sensing and control. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 40(4), 825–838.

    Article  Google Scholar 

  53. Su, Z., Xu, L., Xin, S., Li, W., Shi, Z., & Guo, Q. (2017). “A future outlook for cyber-physical power system,” In 2017 IEEE conference on energy internet and energy system integration (EI2), pp. 1–4.

  54. Xin, S., Guo, Q., Sun, H., Zhang, B., Wang, J., & Chen, C. (2015). Cyber-physical modeling and cyber-contingency assessment of hierarchical control systems. IEEE Transactions on Smart Grid, 6(5), 2375–2385.

    Article  Google Scholar 

  55. Li, W., Ferdowsi, M., Stevic, M., Monti, A., & Ponci, F. (2014). Co-simulation for smart grid communications. IEEE Transactions on Industrial Informatics, 10(4), 2374–2384.

    Article  Google Scholar 

  56. Kosek, A. M., Lünsdorf, O., Scherfke, S., Gehrke, O., & Rohjans, S. (2014). Evaluation of smart grid control strategies in co-simulation-integration of ipsys and mosaik. Power Systems Computation Conference, 2014, 1–7.

    Google Scholar 

  57. Cintuglu, M. H., Mohammed, O. A., Akkaya, K., & Uluagac, A. S. (2017). A survey on smart grid cyber-physical system testbeds. IEEE Communications Surveys Tutorials, 19(1), 446–464.

    Article  Google Scholar 

  58. Locke, G., & Gallagher, P. D. (2010). “NIST framework and roadmap for smart grid interoperability standards,” The National Institute of Standards and Technology, vol. Release 10, Gaithersburg, MD, USA.

  59. Bu, S., & Yu, F. R. (2013). A game-theoretical scheme in the smart grid with demand-side management: Towards a smart cyber-physical power infrastructure. IEEE Transactions on Emerging Topics in Computing, 1(1), 22–32.

    Article  Google Scholar 

  60. Thompson, L. (2002). Industrial data communications, ser. Resources for measurement and control series. ISA–The instrumentation, systems, and automation society. [Online]. Available: https://books.google.co.in/books?id=uu3iAAAAMAAJ

  61. Matveev, A. S., & Savkin, A. V. (2009). Estimation and control over communication networks. Switzerland: Birkhäuser Basel.

    MATH  Google Scholar 

  62. Li, H., Dimitrovski, A., Song, J. B., Han, Z., & Qian, L. (2014). Communication infrastructure design in cyber physical systems with applications in smart grids: A hybrid system framework. IEEE Communications Surveys Tutorials, 16(3), 1689–1708.

    Article  Google Scholar 

  63. Appasani, B., & Mohanta, D. K. (2018). A review on synchrophasor communication system: Communication technologies, standards and applications. Protection and Control of Modern Power Systems, 3(37), 1–7.

    Google Scholar 

  64. Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., & Hancke, G. P. (2011). Smart grid technologies: Communication technologies and standards. IEEE Transactions on Industrial Informatics, 7(4), 529–539.

    Article  Google Scholar 

  65. Naduvathuparambil, B., Valenti, M. C., & Feliachi, A. (2002). “Communication delays in wide area measurement systems,” In Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory (Cat. No.02EX540), pp. 118–122.

  66. Hassan, H. A. H., Pelov, A., & Nuaymi, L. (2015). Integrating cellular networks, smart grid, and renewable energy: Analysis, architecture, and challenges. IEEE Access, 3, 2755–2770.

    Article  Google Scholar 

  67. Kalalas, C., Thrybom, L., & Alonso-Zarate, J. (2016). Cellular communications for smart grid neighborhood area networks: A survey. IEEE Access, 4, 1469–1493.

    Article  Google Scholar 

  68. Meloni, A., & Atzori, L. (2017). The role of satellite communications in the smart grid. IEEE Wireless Communications, 24(2), 50–56.

    Article  Google Scholar 

  69. IEEE Standard for Synchrophasers for Power Systems. (1995). IEEE Std 1344-1995(R2001) (p. 1). https://doi.org/10.1109/IEEESTD.1995.93278.

  70. IEEE Standard for Synchrophasor Data Transfer for Power Systems. (2011). IEEE Std C37.118.2-2011 (Revision of IEEE Std C37.118-2005) (pp. 1–53). https://doi.org/10.1109/IEEESTD.2011.6111222.

  71. IEEE Standard for Synchrophasor Measurements for Power Systems. (2011). IEEE Std C37.118.1-2011 (Revision of IEEE Std C37.118-2005) (pp. 1–61). https://doi.org/10.1109/IEEESTD.2011.6111219.

  72. Martin, K. E. (2015). Synchrophasor measurements under the ieee standard c37.118.1-2011 with amendment c37.118.1a. IEEE Transactions on Power Delivery, 30(3), 1514–1522.

    Article  Google Scholar 

  73. Martin, K. E., Brunello, G., Adamiak, M. G., Antonova, G., Begovic, M., Benmouyal, G., et al. (2014). An overview of the ieee standard c37.118.2-synchrophasor data transfer for power systems. IEEE Transactions on Smart Grid, 5(4), 1980–1984.

    Article  Google Scholar 

  74. Ustun, T. S., Farooq, S. M., & Hussain, S. M. S. (2019). A novel approach for mitigation of replay and masquerade attacks in smartgrids using iec 61850 standard. IEEE Access, 7, 15 6044-15 6053.

    Article  Google Scholar 

  75. “[online] available: http://tissues.iec61850.com/parts.mspx.” [Online]. Available: http://tissues.iec61850.com/parts.mspx

  76. “IEC, IEC 62056-1-0,” Electricity metering data exchange - The DLMS/COSEM suite - Part 1-0: Smart metering standardisation framework, (International Electrotechnical Commission, 2014).

  77. “IEC, IEC 62056-8-4,” Electricity metering data exchange - The DLMS/COSEM suite - Part 8-4: Communication profiles for narrow-band OFDM PLC PRIME neighbourhood networks, (International Electrotechnical Commission, 2018).

  78. “Narrowband orthogonal frequency division multiplexing power line communication transceivers for PRIME networks, ITU-T, recommendation G.9904,” Oct. 2012. [Online]. Available: https://www.itu.int/rec/T-REC-G.9904-201210-I/en

  79. R. Y. et al., (2010). “The research on communication standard framework of smart grid,” In CICED 2010 proceedings, pp. 1–6.

  80. Hoga, C. (2007). New ethernet technologies for substation automation. IEEE Lausanne Power Technology, 2007, 707–712.

    Article  Google Scholar 

  81. Appasani, B., Maddikara, J., & Mohanta, D. (2019). Standards and communication systems in smart grid. In E. Kabalci & Y. Kabalci (Eds.), Smart grids and their communication systems. energy systems in electrical engineering. Singapore: Springer.

    Google Scholar 

  82. Mishra, S., Li, X., Pan, T., Kuhnle, A., Thai, M. T., & Seo, J. (2017). Price modification attack and protection scheme in smart grid. IEEE Transactions on Smart Grid, 8(4), 1864–1875.

    Article  Google Scholar 

  83. Sridhar, S., Hahn, A., & Govindarasu, M. (2012). Cyber attack-resilient control for smart grid. IEEE PES Innovative Smart Grid Technologies (ISGT), 2012, 1–3.

    Google Scholar 

  84. Clements, S., & Kirkham, H. (2010). Cyber-security considerations for the smart grid. IEEE PES General Meeting, 1–5.

  85. ISA-62443-2-1-2009 Security for Industrial Automation and Control Systems: Establishing an Industrial Automation and Control Systems Security Program. (2009). Available at: https://www.isa.org/products/isa-62443-2-1-2009-security-for-industrial-automat. Accessed 19 Mar 2021.

  86. Lyu, X., Ding, Y., & Yang, S. (2019). Safety and security risk assessment in cyber-physical systems. IET Cyber-Physical Systems: Theory Applications, 4(3), 221–232.

    Article  Google Scholar 

  87. Li, X., Liang, X., Lu, R., Shen, X., Lin, X., & Zhu, H. (2012). Securing smart grid: cyber attacks, countermeasures, and challenges. IEEE Communications Magazine, 50(8), 38–45.

    Article  Google Scholar 

  88. Peng, Y., Lu, T., Liu, J., Gao, Y., Guo, X., & Xie, F. (2013). Cyber-physical system risk assessment. Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2013, 442–447.

    Google Scholar 

  89. Stouffer, K., Falco, J., & Scarfone, K. (2011). Guide to industrial control systems (ICS) security. NIST Special Publications, 800(82), 29–32.

    Google Scholar 

  90. NIST Cybersecurity Framework: Framework for Improving Critical Infrastructure Cybersecurity. (2014). Available at: https://www.nist.gov/system/files/documents/cyberframework/cybersecurity-framework-021214.pdf. Accessed 19 Mar 2021.

  91. IEC 62351 Security Standards for the Power System Information Infrastructure. (2012). Available at: http://iectc57.ucaiug.org/wg15public/Public%20Documents/White%20Paper%20on%20Security%20Standards%20in%20IEC%20TC57.pdf. Accessed 19 Mar 2021.

  92. Moussa, B., Debbabi, M., & Assi, C. (2018). A detection and mitigation model for PTP delay attack in an IEC 61850 substation. IEEE Transactions on Smart Grid, 9(5), 3954–3965.

    Article  Google Scholar 

  93. Roy, A., Kim, D. S., & Trivedi, K. S. (2012). “Scalable optimal countermeasure selection using implicit enumeration on attack countermeasure trees,” In Proceedings of IEEE/IFIP international conference on dependable systems and networks (DSN 2012), pp. 1–12.

  94. Ten, C., Liu, C., & Govindarasu, M. (2007). Vulnerability assessment of cybersecurity for scada systems using attack trees. Proceedings of IEEE Power Engineering Society General Meeting, 2007, 1–8.

    Google Scholar 

  95. Sun, M., Mohan, L., & Sha, L. et al., (2009). “Addressing safety and security contradictions in cyber-physical systems,” In Proceedings of 1st workshop. future directions in cyber-physical systems security (CPSSW’09), Newark, New Jersey.

  96. Young, W., & Leveson, N. (2013). “Systems thinking for safety and security,” In Proceedings of 29th annual computer security applications Conference (ACSAC), New Orleans, Louisiana, USA, pp. 1–8.

  97. Shapiro, S. S. (2016). Privacy risk analysis based on system control structures: Adapting system-theoretic process analysis for privacy engineering. IEEE Security and Privacy Workshops (SPW), 2016, 17–24.

    Google Scholar 

  98. Huang, K., Zhou, C., Tian, Y. Tu, W., & Peng, Y. (2017). “Application of bayesian network to data-driven cyber-security risk assessment in scada networks,” In Proceedings of 2017 27th international telecommunication networks and applications conference (ITNAC), pp. 1–6.

  99. Zhang, Q., Zhou, C., Tian, Y., Xiong, N., Qin, Y., & Hu, B. (2018). A fuzzy probability bayesian network approach for dynamic cybersecurity risk assessment in industrial control systems. IEEE Transactions on Industrial Informatics, 14(6), 2497–2506.

    Article  Google Scholar 

  100. Zhang, Q., Zhou, C., Xiong, N., Qin, Y., Li, X., & Huang, S. (2016). Multimodel-based incident prediction and risk assessment in dynamic cybersecurity protection for industrial control systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(10), 1429–1444.

    Article  Google Scholar 

  101. Ding, Q., Wang, X., Zhu, J., et al. (2018). Information security framework based on blockchain for cyber-physics system. Computer Science, 45(2), 32–39.

    Google Scholar 

  102. Veeramany, A., Coles, G. A., Unwin, S. D., Nguyen, T. B., & Dagle, J. E. (2018). Trial implementation of a multihazard risk assessment framework for high-impact low-frequency power grid events. IEEE Systems Journal, 12(4), 3807–3815.

    Article  Google Scholar 

  103. Yoshimura, I., & Sato, Y. (2008). Safety achieved by the safe failure fraction (sff) in iec 61508. IEEE Transactions on Reliability, 57(4), 662–669.

    Article  Google Scholar 

  104. IEC 62443 Security for Industrial Automation and Control System. (2015). Available at: https://webstore.iec.ch/preview/info_iec62443-2-3%7Bed1.0%7Den.pdf. Accessed 19 Mar 2021.

  105. Pan, D., Liu, F., Zhou, X., & Li, T. (2008). “Functional safety in building automation and control systems,” In Proceedings of 2008 3rd IEEE Conference on Industrial Electronics and Applications, pp. 467–470.

  106. Sabaliauskaite, G., & Mathur, A. (2015). “Aligning cyber-physical system safety and security,” In Proceedings of 1st Asia - Pacific Conference on Complex Systems Design & Management, Singapore, pp. 41–53.

  107. Nourian, A., & Madnick, S. (2018). A systems theoretic approach to the security threats in cyber physical systems applied to stuxnet. IEEE Transactions on Dependable and Secure Computing, 15(1), 2–13.

    Article  Google Scholar 

  108. Grunske, L., Colvin, R., & Winter, K. (2007). “Probabilistic model-checking support for fmea,” In Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007), pp. 119–128.

  109. Ebeling, C. (2009). An Introduction to Reliability and Maintainability Engineering. Long Grove, Illinois: Waveland Press. (1997).

    Google Scholar 

  110. Dunjó, J., Fthenakis, V., Vílchez, J., et al. (2010). Hazard and operability (HAZOP) analysis, a literature review. Journal of Hazardous Materials, 173(1–3), 19–32.

    Article  Google Scholar 

  111. Kennedy, R., & Kirwan, B. (1998). Development of a hazard and operability-based method for identifying safety management vulnerabilities in high risk systems. Safety Science, 30(3), 249–274.

    Article  Google Scholar 

  112. Rausand, M. (2013). Risk assessment: theory, methods, and applications. Hoboken, New Jersey: Wiley.

    MATH  Google Scholar 

  113. Banerjee, A., Venkatasubramanian, K. K., Mukherjee, T., & Gupta, S. K. S. (2012). Ensuring safety, security, and sustainability of mission-critical cyber-physical systems. Proceedings of the IEEE, 100(1), 283–299.

    Article  Google Scholar 

  114. Modarres, M., & Cheon, S. (1999). Function-centered modeling of engineering systems using the goal tree-success tree technique and functional primitives. Reliability Engineering and System Safety, 64(2), 181–200.

    Article  Google Scholar 

  115. Brissaud, F., Barros, A., & Bérenguer, C. et al. (2009). “Reliability study of an intelligent transmitter,” In Proceedings of 15th ISSAT international conference reliability and quality in design, San Francisco, United States, pp. 224–233.

  116. Lee, D., Lee, J., & Cheon, S. et al. (2013). “Application of system-theoretic process analysis to engineered safety features-component control system,” In Proceedings of 37th enlarged halden programme group (EHPG) meeting, Storefjell, Norway.

  117. Sterbenz, J. P., Hutchison, D., Çetinkaya, E. K., Jabbar, A., Rohrer, J. P., Schöller, M., & Smith, P. (2010). Resilience and survivability in communication networks: Strategies, principles, and survey of disciplines. Computer Networks, 54(8), 1245–1265. (Resilient and Survivable networks.).

    Article  MATH  Google Scholar 

  118. Mohanta, D. K., Cherukuri, M., & Roy, D. S. (2016). A brief review of phasor measurement units as sensors for smart grid. Electric Power Components & Systems, 44(4), 411–425.

    Article  Google Scholar 

  119. Liu, W., Liu, N., Fan, Y., Zhang, L., & Zhang, x. (2009).“Reliability analysis of wide area measurement system based on the centralized distributed model,” In 2009 IEEE/PES power systems conference and exposition, pp. 1–6.

  120. Zhao, X., Lu, J., Wang, Y., Peng, J., He, F., & Wei, H. (2009). Reliability assessment of wams based on a combined hardware and software probability model of phasor measurement units. Dianli Xitong Zidonghua Automation of Electric Power Systems, 33(16), 19–23.

    Google Scholar 

  121. Goutard, E., Rudolph, T., & Mesbah, M. (2010). “Impact of communication network impairments on wide area monitoring, control and protection applications in the IEC61850 environment,” In Proceedings of 43rd international conference on large high voltage electric systems 2010, CIGRE 2010.

  122. Asprou, M., Hadjiantonis, A. M., Ciornei, I., Milis, G., & Kyriakides, E. (2012). “On the complexities of interdependent infrastructures for wide area monitoring systems,” In 2012 complexity in engineering (COMPENG). proceedings, pp. 1–6.

  123. Menike, S., Yahampath, P., Rajapakse, A., & Alfa, A. (2013). Queuing-theoretic modeling of a pmu communication network. IEEE Power Energy Society General Meeting, 2013, 1–5.

    Google Scholar 

  124. Rana, A. S., Thomas, M. S., & Senroy, N. (2017). Reliability evaluation of wams using markov-based graph theory approach. IET Generation, Transmission Distribution, 11(11), 2930–2937.

    Article  Google Scholar 

  125. Li, J., Zhang, A., Zhang, H., Liu, X., Geng, Y., & Wei, Y. (2015). Reliability evaluation of the wide area protect system. Diangong Jishu Xuebao Transactions of China Electrotechnical Society, 30(12), 344–350.

    Google Scholar 

  126. Sodhi, R., & Sharieff, M. I. (2015). Phasor measurement unit placement framework for enhanced wide-area situational awareness. IET Generation, Transmission Distribution, 9(2), 172–182.

    Article  Google Scholar 

  127. Castello, P., Ferrari, P., Flammini, A., Muscas, C., Pegoraro, P. A., & Rinaldi, S. (2015). A distributed pmu for electrical substations with wireless redundant process bus. IEEE Transactions on Instrumentation and Measurement, 64(5), 1149–1157.

    Article  Google Scholar 

  128. Sterbenz, J., Cetinkaya, E. K., Hameed, M., Jabbar, A., Qian, S., & Rohrer, J. (2013). Evaluation of network resilience, survivability, and disruption tolerance: analysis, topology generation, simulation, and experimentation. Telecommunication Systems, 52(2), 705–736.

    Google Scholar 

  129. Rak, J. (2015). Principles of communication networks resilience. In Resilient routing in communication networks. computer communications and networks, Springer, Cham.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pattanayak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, A.V., Appasani, B., Ghazali, A.N. et al. Smart grid cyber-physical systems: communication technologies, standards and challenges. Wireless Netw 27, 2595–2613 (2021). https://doi.org/10.1007/s11276-021-02579-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02579-1

Keywords

Navigation