Skip to main content

Advertisement

Log in

New Insights into the Functions of Nucleic Acids Controlled by Cellular Microenvironments

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

The right-handed double-helical B-form structure (B-form duplex) has been widely recognized as the canonical structure of nucleic acids since it was first proposed by James Watson and Francis Crick in 1953. This B-form duplex model has a monochronic and static structure and codes genetic information within a sequence. Interestingly, DNA and RNA can form various non-canonical structures, such as hairpin loops, left-handed helices, triplexes, tetraplexes of G-quadruplex and i-motif, and branched junctions, in addition to the canonical structure. The formation of non-canonical structures depends not only on sequence but also on the surrounding environment. Importantly, these non-canonical structures may exhibit a wide variety of biological roles by changing their structures and stabilities in response to the surrounding environments, which undergo vast changes at specific locations and at specific times in cells. Here, we review recent progress regarding the interesting behaviors and functions of nucleic acids controlled by molecularly crowded cellular conditions. New insights gained from recent studies suggest that nucleic acids not only code genetic information in sequences but also have unknown functions regarding their structures and stabilities through drastic structural changes in cellular environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Srere PA (1980) The infrastructure of the mitochondrial matrix. Trends Biochem Sci 5:120–121

    Article  CAS  Google Scholar 

  2. Lohka MJ, Maller JL (1985) Induction of nuclear envelope breakdown, chromosome condensation, and spindle formation in cell-free extracts. J Cell Biol 101:518–523

    Article  CAS  PubMed  Google Scholar 

  3. Zimmerman SB, Trach SO (1991) Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 222:599–620

    Article  CAS  PubMed  Google Scholar 

  4. Lindner RA, Ralston GB (1997) Macromolecular crowding: effects on actin polymerisation. Biophys Chem 66:57–66

    Article  CAS  PubMed  Google Scholar 

  5. van den Berg B, Ellis RJ, Dobson CM (1999) Effects of macromolecular crowding on protein folding and aggregation. EMBO J 18:6927–6933

    Article  PubMed  PubMed Central  Google Scholar 

  6. Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276:10577–10580

    Article  CAS  PubMed  Google Scholar 

  7. Ellis RJ, Minton AP (2003) Cell biology: join the crowd. Nature 425:27–28

    Article  CAS  PubMed  Google Scholar 

  8. Ovadi J, Saks V (2004) On the origin of intracellular compartmentation and organized metabolic systems. Mol Cell Biochem 256–257:5–12

    Article  PubMed  Google Scholar 

  9. Kim JS, Yethiraj A (2009) Effect of macromolecular crowding on reaction rates: a computational and theoretical study. Biophys J 96:1333–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Strulson CA, Molden RC, Keating CD, Bevilacqua PC (2012) RNA catalysis through compartmentalization. Nat Chem 4:941–946

    Article  CAS  PubMed  Google Scholar 

  11. Machiyama H, Morikawa TJ, Okamoto K, Watanabe TM, Fujita H (2017) The use of a genetically encoded molecular crowding sensor in various biological phenomena. Biophys Physicobiol 14:119–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takahashi S, Yamamoto J, Kitamura A, Kinjo M, Sugimoto N (2019) Characterization of Intracellular crowding environments with topology-based DNA quadruplex sensors. Anal Chem 91:2586–2590

    Article  CAS  PubMed  Google Scholar 

  13. Walter H, Brooks DE (1995) Phase-separation in cytoplasm, due to macromolecular crowding, is the basis for microcompartmentation. FEBS Lett 361:135–139

    Article  CAS  PubMed  Google Scholar 

  14. Iborra FJ (2007) Can visco-elastic phase separation, macromolecular crowding and colloidal physics explain nuclear organisation? Theor Biol Med Model 4:15

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hancock R (2008) Self-association of polynucleosome chains by macromolecular crowding. Eur Biophys J 37:1059–1064

    Article  CAS  PubMed  Google Scholar 

  16. Brangwynne CP, Tompa P, Pappu RV (2015) Polymer physics of intracellular phase transitions. Nat Phys 11:899–904

    Article  CAS  Google Scholar 

  17. Woodruff JB, Ferreira Gomes B, Widlund PO, Mahamid J, Honigmann A, Hyman AA (2017) The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 169(1066–1077):e1010

    Google Scholar 

  18. Delarue M, Brittingham GP, Pfeffer S, Surovtsev IV, Pinglay S, Kennedy KJ, Schaffer M, Gutierrez JI, Sang D, Poterewicz G, Chung JK, Plitzko JM, Groves JT, Jacobs-Wagner C, Engel BD, Holt LJ (2018) mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding. Cell 174(338–349):e320

    Google Scholar 

  19. Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Julicher F, Hyman AA (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–1732

    Article  CAS  PubMed  Google Scholar 

  20. Kaganovich D, Kopito R, Frydman J (2008) Misfolded proteins partition between two distinct quality control compartments. Nature 454:1088–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bouchard JJ, Otero JH, Scott DC, Szulc E, Martin EW, Sabri N, Granata D, Marzahn MR, Lindorff-Larsen K, Salvatella X, Schulman BA, Mittag T (2018) Cancer mutations of the tumor suppressor SPOP disrupt the formation of active. Phase-separated compartments. Mol Cell 72(19–36):e18

    Google Scholar 

  22. Su X, Ditlev JA, Hui E, Xing W, Banjade S, Okrut J, King DS, Taunton J, Rosen MK, Vale RD (2016) Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352:595–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Du M, Chen ZJ (2018) DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361:704–709

    Article  CAS  PubMed  Google Scholar 

  24. Zhang JZ, Lu T-W, Stolerman LM, Tenner B, Yang JR, Zhang J-F, Falcke M, Rangamani P, Taylor SS, Mehta S, Zhang J (2020) Phase separation of a PKA regulatory subunit controls cAMP compartmentation and oncogenic signaling. Cell 182:1531–1544.e15

  25. Nakano S, Miyoshi D, Sugimoto N (2014) Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev 114:2733–2758

    Article  CAS  PubMed  Google Scholar 

  26. Sugimoto N (2014) Noncanonical structures and their thermodynamics of DNA and RNA under molecular crowding: beyond the Watson-Crick double helix. Int Rev Cell Mol Biol 307:205–273

    Article  CAS  PubMed  Google Scholar 

  27. Anderson CF, Record MT Jr (1995) Salt-nucleic acid interactions. Annu Rev Phys Chem 46:657–700

    Article  CAS  PubMed  Google Scholar 

  28. Breslauer KJ, Frank R, Blocker H, Marky LA (1986) Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci USA 83:3746–3750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Auffinger P, Westhof E (2001) Hydrophobic groups stabilize the hydration shell of 2’-O-methylated RNA duplexes. Angew Chem Int Ed Engl 40:4648–4650

    Article  CAS  PubMed  Google Scholar 

  30. Auffinger P, Westhof E (2002) Melting of the solvent structure around a RNA duplex: a molecular dynamics simulation study. Biophys Chem 95:203–210

    Article  CAS  PubMed  Google Scholar 

  31. Feig M, Pettitt BM (1999) Sodium and chlorine ions as part of the DNA solvation shell. Biophys J 77:1769–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feig M, Pettitt BM (1998) A molecular simulation picture of DNA hydration around A- and B-DNA. Biopolymers 48:199–209

    Article  CAS  PubMed  Google Scholar 

  33. Spink CH, Chaires JB (1999) Effects of hydration, ion release, and excluded volume on the melting of triplex and duplex DNA. Biochemistry 38:496–508

    Article  CAS  PubMed  Google Scholar 

  34. Nordstrom LJ, Clark CA, Andersen B, Champlin SM, Schwinefus JJ (2006) Effect of ethylene glycol, urea, and N-methylated glycines on DNA thermal stability: the role of DNA base pair composition and hydration. Biochemistry 45:9604–9614

    Article  CAS  PubMed  Google Scholar 

  35. Record MT Jr, Anderson CF, Lohman TM (1978) Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys 11:103–178

    Article  CAS  PubMed  Google Scholar 

  36. Rozners E, Moulder J (2004) Hydration of short DNA, RNA and 2’-OMe oligonucleotides determined by osmotic stressing. Nucleic Acids Res 32:248–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tateishi-Karimata H, Banerjee D, Ohyama T, Matsumoto S, Miyoshi D, Nakano S, Sugimoto N (2020) Hydroxyl groups in cosolutes regulate the G-quadruplex topology of telomeric DNA. Biochem Biophys Res Commun 525:177–183

    Article  CAS  Google Scholar 

  38. Kumar N, Maiti S (2005) The effect of osmolytes and small molecule on Quadruplex-WC duplex equilibrium: a fluorescence resonance energy transfer study. Nucleic Acids Res 33:6723–6732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Verdian Doghaei A, Housaindokht MR, Bozorgmehr MR (2015) Molecular crowding effects on conformation and stability of G-quadruplex DNA structure: insights from molecular dynamics simulation. J Theor Biol 364:103–112

    Article  CAS  PubMed  Google Scholar 

  40. Nakano S, Sugimoto N (2016) The structural stability and catalytic activity of DNA and RNA oligonucleotides in the presence of organic solvents. Biophys Rev 8:11–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakano S, Sugimoto N (2016) Model studies of the effects of intracellular crowding on nucleic acid interactions. Mol Biosyst 13:32–41

    Article  PubMed  Google Scholar 

  42. Miyoshi D, Karimata H, Sugimoto N (2006) Hydration regulates thermodynamics of G-quadruplex formation under molecular crowding conditions. J Am Chem Soc 128:7957–7963

    Article  CAS  PubMed  Google Scholar 

  43. Miyoshi D, Sugimoto N (2008) Molecular crowding effects on structure and stability of DNA. Biochimie 90:1040–1051

    Article  CAS  PubMed  Google Scholar 

  44. Arora A, Maiti S (2009) Stability and molecular recognition of quadruplexes with different loop length in the absence and presence of molecular crowding agents. J Phys Chem B 113:8784–8792

    Article  CAS  PubMed  Google Scholar 

  45. Zheng KW, Chen Z, Hao YH, Tan Z (2010) Molecular crowding creates an essential environment for the formation of stable G-quadruplexes in long double-stranded DNA. Nucleic Acids Res 38:327–338

    Article  CAS  PubMed  Google Scholar 

  46. Petraccone L, Malafronte A, Amato J, Giancola C (2012) G-quadruplexes from human telomeric DNA: how many conformations in PEG containing solutions? J Phys Chem B 116:2294–2305

    Article  CAS  PubMed  Google Scholar 

  47. Miyoshi D, Nakao A, Sugimoto N (2002) Molecular crowding regulates the structural switch of the DNA G-quadruplex. Biochemistry 41:15017–15024

    Article  CAS  PubMed  Google Scholar 

  48. Zhou J, Wei C, Jia G, Wang X, Tang Q, Feng Z, Li C (2008) The structural transition and compaction of human telomeric G-quadruplex induced by excluded volume effect under cation-deficient conditions. Biophys Chem 136:124–127

    Article  CAS  PubMed  Google Scholar 

  49. Matsumoto S, Tateishi-Karimata H, Takahashi S, Ohyama T, Sugimoto N (2020) Effect of molecular crowding on the stability of RNA G-quadruplexes with various numbers of quartets and lengths of loops. Biochemistry 59:2640–2649

    Article  CAS  PubMed  Google Scholar 

  50. Miyoshi D, Matsumura S, Nakano S, Sugimoto N (2004) Duplex dissociation of telomere DNAs induced by molecular crowding. J Am Chem Soc 126:165–169

    Article  CAS  PubMed  Google Scholar 

  51. Rajendran A, Nakano S, Sugimoto N (2010) Molecular crowding of the cosolutes induces an intramolecular i-motif structure of triplet repeat DNA oligomers at neutral pH. Chem Commun (Camb) 46:1299–1301

    Article  CAS  Google Scholar 

  52. Cristofari C, Rigo R, Greco ML, Ghezzo M, Sissi C (2019) pH-driven conformational switch between non-canonical DNA structures in a C-rich domain of EGFR promoter. Sci Rep 9:1210

    Article  PubMed  PubMed Central  Google Scholar 

  53. Iaccarino N, Di Porzio A, Amato J, Pagano B, Brancaccio D, Novellino E, Leardi R, Randazzo A (2019) Assessing the influence of pH and cationic strength on i-motif DNA structure. Anal Bioanal Chem 411:7473–7479

    Article  CAS  PubMed  Google Scholar 

  54. Tinoco I Jr, Uhlenbeck OC, Levine MD (1971) Estimation of secondary structure in ribonucleic acids. Nature 230:362–367

    Article  CAS  PubMed  Google Scholar 

  55. Tinoco I Jr, Borer PN, Dengler B, Levin MD, Uhlenbeck OC, Crothers DM, Bralla J (1973) Improved estimation of secondary structure in ribonucleic acids. Nat New Biol 246:40–41

    Article  CAS  PubMed  Google Scholar 

  56. Borer PN, Dengler B, Tinoco I Jr, Uhlenbeck OC (1974) Stability of ribonucleic acid double-stranded helices. J Mol Biol 86:843–853

    Article  CAS  PubMed  Google Scholar 

  57. Ghosh S, Takahashi S, Endoh T, Tateishi-Karimata H, Hazra S, Sugimoto N (2019) Validation of the nearest-neighbor model for Watson-Crick self-complementary DNA duplexes in molecular crowding condition. Nucleic Acids Res 47:3284–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Adams MS, Znosko BM (2019) Thermodynamic characterization and nearest neighbor parameters for RNA duplexes under molecular crowding conditions. Nucleic Acids Res 47:3658–3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ghosh S, Takahashi S, Ohyama T, Endoh T, Tateishi-Karimata H, Sugimoto N (2020) Nearest-neighbor parameters for predicting DNA duplex stability in diverse molecular crowding conditions. Proc Natl Acad Sci USA 117:14194–14201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhou HX, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pramanik S, Nagatoishi S, Sugimoto N (2012) DNA tetraplex structure formation from human telomeric repeat motif (TTAGGG):(CCCTAA) in nanocavity water pools of reverse micelles. Chem Commun (Camb) 48:4815–4817

    Article  CAS  Google Scholar 

  62. Van Horn WD, Ogilvie ME, Flynn PF (2009) Reverse micelle encapsulation as a model for intracellular crowding. J Am Chem Soc 131:8030–8039

    Article  PubMed  Google Scholar 

  63. McIntosh R, Nicastro D, Mastronarde D (2005) New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol 15:43–51

    Article  CAS  PubMed  Google Scholar 

  64. Pramanik S, Nakamura K, Usui K, Nakano S, Saxena S, Matsui J, Miyoshi D, Sugimoto N (2011) Thermodynamic stability of Hoogsteen and Watson-Crick base pairs in the presence of histone H3-mimicking peptide. Chem Commun (Camb) 47:2790–2792

    Article  CAS  Google Scholar 

  65. Miyoshi D, Ueda YM, Shimada N, Nakano S, Sugimoto N, Maruyama A (2014) Drastic stabilization of parallel DNA hybridizations by a polylysine comb-type copolymer with hydrophilic graft chain. ChemMedChem 9:2156–2163

    Article  CAS  PubMed  Google Scholar 

  66. Yamayoshi A, Miyoshi D, Zouzumi YK, Matsuyama Y, Ariyoshi J, Shimada N, Murakami A, Wada T, Maruyama A (2017) Selective and robust stabilization of triplex DNA structures using cationic comb-type copolymers. J Phys Chem B 121:4015–4022

    Article  CAS  PubMed  Google Scholar 

  67. Tateishi-Karimata H, Sugimoto N (2012) A-T base pairs are more stable than G-C base pairs in a hydrated ionic liquid. Angew Chem Int Ed Engl 51:1416–1419

    Article  CAS  PubMed  Google Scholar 

  68. Tateishi-Karimata H, Nakano M, Sugimoto N (2014) Comparable stability of Hoogsteen and Watson-Crick base pairs in ionic liquid choline dihydrogen phosphate. Sci Rep 4:3593

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tateishi-Karimata H, Nakano M, Pramanik S, Tanaka S, Sugimoto N (2015) i-Motifs are more stable than G-quadruplexes in a hydrated ionic liquid. Chem Commun (Camb) 51:6909–6912

    Article  CAS  Google Scholar 

  70. Nakano M, Tateishi-Karimata H, Tanaka S, Sugimoto N (2014) Choline ion interactions with DNA atoms explain unique stabilization of A-T base pairs in DNA duplexes: a microscopic view. J Phys Chem B 118:379–389

    Article  CAS  PubMed  Google Scholar 

  71. Tateishi-Karimata H, Sugimoto N (2014) Structure, stability and behaviour of nucleic acids in ionic liquids. Nucleic Acids Res 42:8831–8844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Katz-Brull R, Degani H (1996) Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Anticancer Res 16:1375–1380

    CAS  PubMed  Google Scholar 

  73. Glunde K, Serkova NJ (2006) Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism. Pharmacogenomics 7:1109–1123

    Article  CAS  PubMed  Google Scholar 

  74. Nakano S, Karimata H, Ohmichi T, Kawakami J, Sugimoto N (2004) The effect of molecular crowding with nucleotide length and cosolute structure on DNA duplex stability. J Am Chem Soc 126:14330–14331

    Article  CAS  PubMed  Google Scholar 

  75. Miyoshi D, Nakamura K, Tateishi-Karimata H, Ohmichi T, Sugimoto N (2009) Hydration of Watson-Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions. J Am Chem Soc 131:3522–3531

    Article  CAS  PubMed  Google Scholar 

  76. Spink CH, Garbett N, Chaires JB (2007) Enthalpies of DNA melting in the presence of osmolytes. Biophys Chem 126:176–185

    Article  CAS  PubMed  Google Scholar 

  77. Muhuri S, Mimura K, Miyoshi D, Sugimoto N (2009) Stabilization of three-way junctions of DNA under molecular crowding conditions. J Am Chem Soc 131:9268–9280

    Article  CAS  PubMed  Google Scholar 

  78. Toulokhonov I, Artsimovitch I, Landick R (2001) Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins. Science 292:730–733

    Article  CAS  PubMed  Google Scholar 

  79. Toulme F, Mosrin-Huaman C, Artsimovitch I, Rahmouni AR (2005) Transcriptional pausing in vivo: a nascent RNA hairpin restricts lateral movements of RNA polymerase in both forward and reverse directions. J Mol Biol 351:39–51

    Article  CAS  PubMed  Google Scholar 

  80. Ditlevson JV, Tornaletti S, Belotserkovskii BP, Teijeiro V, Wang G, Vasquez KM, Hanawalt PC (2008) Inhibitory effect of a short Z-DNA forming sequence on transcription elongation by T7 RNA polymerase. Nucleic Acids Res 36:3163–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Belotserkovskii BP, De Silva E, Tornaletti S, Wang G, Vasquez KM, Hanawalt PC (2007) A triplex-forming sequence from the human c-MYC promoter interferes with DNA transcription. J Biol Chem 282:32433–32441

    Article  CAS  PubMed  Google Scholar 

  82. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA 99:11593–11598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tornaletti S, Park-Snyder S, Hanawalt PC (2008) G4-forming sequences in the non-transcribed DNA strand pose blocks to T7 RNA polymerase and mammalian RNA polymerase II. J Biol Chem 283:12756–12762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Broxson C, Beckett J, Tornaletti S (2011) Transcription arrest by a G quadruplex forming-trinucleotide repeat sequence from the human c-myb gene. Biochemistry 50:4162–4172

    Article  CAS  PubMed  Google Scholar 

  85. Eddy J, Vallur AC, Varma S, Liu H, Reinhold WC, Pommier Y, Maizels N (2011) G4 motifs correlate with promoter-proximal transcriptional pausing in human genes. Nucleic Acids Res 39:4975–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zafar MK, Hazeslip L, Chauhan MZ, Byrd AK (2020) The expression of human DNA helicase B Is affected by G-quadruplexes in the promoter. Biochemistry 59:2401–2409

    Article  CAS  PubMed  Google Scholar 

  87. Tateishi-Karimata H, Isono N, Sugimoto N (2014) New insights into transcription fidelity: thermal stability of non-canonical structures in template DNA regulates transcriptional arrest, pause, and slippage. PLoS One 9:e90580

    Article  PubMed  PubMed Central  Google Scholar 

  88. Endoh T, Rode AB, Takahashi S, Kataoka Y, Kuwahara M, Sugimoto N (2016) Real-time monitoring of G-quadruplex formation during transcription. Anal Chem 88:1984–1989

    Article  CAS  PubMed  Google Scholar 

  89. Fujita H, Kataoka Y, Tobita S, Kuwahara M, Sugimoto N (2016) Novel one-tube-one-step real-time methodology for rapid transcriptomic biomarker detection: signal amplification by ternary initiation complexes. Anal Chem 88:7137–7144

    Article  CAS  PubMed  Google Scholar 

  90. Endoh T, Sugimoto N (2017) Conformational dynamics of mRNA in gene expression as new pharmaceutical target. Chem Rec 17:817–832

    Article  CAS  PubMed  Google Scholar 

  91. Endoh T, Sugimoto N (2019) Conformational dynamics of the RNA G-quadruplex and its effect on translation efficiency. Molecules 24:20

    Article  Google Scholar 

  92. Huppert JL, Bugaut A, Kumari S, Balasubramanian S (2008) G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Res 36:6260–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kumari S, Bugaut A, Huppert JL, Balasubramanian S (2007) An RNA G-quadruplex in the 5’ UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol 3:218–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kumari S, Bugaut A, Balasubramanian S (2008) Position and stability are determining factors for translation repression by an RNA G-quadruplex-forming sequence within the 5’ UTR of the NRAS proto-oncogene. Biochemistry 47:12664–12669

    Article  CAS  PubMed  Google Scholar 

  95. Bugaut A, Balasubramanian S (2012) 5’-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res 40:4727–4741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Agarwala P, Pandey S, Maiti S (2015) The tale of RNA G-quadruplex. Org Biomol Chem 13:5570–5585

    Article  CAS  PubMed  Google Scholar 

  97. Endoh T, Kawasaki Y, Sugimoto N (2012) Synchronized translation for detection of temporal stalling of ribosome during single-turnover translation. Anal Chem 84:857–861

    Article  CAS  PubMed  Google Scholar 

  98. Endoh T, Kawasaki Y, Sugimoto N (2013) Stability of RNA quadruplex in open reading frame determines proteolysis of human estrogen receptor alpha. Nucleic Acids Res 41:6222–6231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Endoh T, Kawasaki Y, Sugimoto N (2013) Suppression of gene expression by G-quadruplexes in open reading frames depends on G-quadruplex stability. Angew Chem Int Ed Engl 52:5522–5526

    Article  CAS  PubMed  Google Scholar 

  100. Endoh T, Sugimoto N (2013) Unusual -1 ribosomal frameshift caused by stable RNA G-quadruplex in open reading frame. Anal Chem 85:11435–11439

    Article  CAS  PubMed  Google Scholar 

  101. Buchan JR, Stansfield I (2007) Halting a cellular production line: responses to ribosomal pausing during translation. Biol Cell 99:475–487

    Article  CAS  PubMed  Google Scholar 

  102. Tu C, Tzeng TH, Bruenn JA (1992) Ribosomal movement impeded at a pseudoknot required for frameshifting. Proc Natl Acad Sci USA 89:8636–8640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Farabaugh PJ (1996) Programmed translational frameshifting. Annu Rev Genet 30:507–528

    Article  CAS  PubMed  Google Scholar 

  104. Fernandez J, Yaman I, Huang C, Liu H, Lopez AB, Komar AA, Caprara MG, Merrick WC, Snider MD, Kaufman RJ, Lamers WH, Hatzoglou M (2005) Ribosome stalling regulates IRES-mediated translation in eukaryotes, a parallel to prokaryotic attenuation. Mol Cell 17:405–416

    Article  CAS  PubMed  Google Scholar 

  105. Giedroc DP, Cornish PV (2009) Frameshifting RNA pseudoknots: structure and mechanism. Virus Res 139:193–208

    Article  CAS  PubMed  Google Scholar 

  106. Komar AA (2009) A pause for thought along the co-translational folding pathway. Trends Biochem Sci 34:16–24

    Article  CAS  PubMed  Google Scholar 

  107. Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW Jr, Swanstrom R, Burch CL, Weeks KM (2009) Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460:711–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang G, Ignatova Z (2009) Generic algorithm to predict the speed of translational elongation: implications for protein biogenesis. PLoS One 4:e5036

    Article  PubMed  PubMed Central  Google Scholar 

  109. Paeschke K, Bochman ML, Garcia PD, Cejka P, Friedman KL, Kowalczykowski SC, Zakian VA (2013) Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497:458–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Brosh RM Jr (2013) DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer 13:542–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lopes J, Piazza A, Bermejo R, Kriegsman B, Colosio A, Teulade-Fichou MP, Foiani M, Nicolas A (2011) G-quadruplex-induced instability during leading-strand replication. EMBO J 30:4033–4046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Teng FY, Hou XM, Fan SH, Rety S, Dou SX, Xi XG (2017) Escherichia coli DNA polymerase I can disrupt G-quadruplex structures during DNA replication. FEBS J 284:4051–4065

    Article  CAS  PubMed  Google Scholar 

  113. Wang Y, Yang J, Wild AT, Wu WH, Shah R, Danussi C, Riggins GJ, Kannan K, Sulman EP, Chan TA, Huse JT (2019) G-quadruplex DNA drives genomic instability and represents a targetable molecular abnormality in ATRX-deficient malignant glioma. Nat Commun 10:943

    Article  PubMed  PubMed Central  Google Scholar 

  114. Murphy CT, Gupta A, Armitage BA, Opresko PL (2014) Hybridization of G-quadruplex-forming peptide nucleic acids to guanine-rich DNA templates inhibits DNA polymerase eta extension. Biochemistry 53:5315–5322

    Article  CAS  PubMed  Google Scholar 

  115. Takahashi S, Brazier JA, Sugimoto N (2017) Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase. Proc Natl Acad Sci USA 114:9605–9610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Farias LM, Ocana DB, Diaz L, Larrea F, Avila-Chavez E, Cadena A, Hinojosa LM, Lara G, Villanueva LA, Vargas C, Hernandez-Gallegos E, Camacho-Arroyo I, Duenas-Gonzalez A, Perez-Cardenas E, Pardo LA, Morales A, Taja-Chayeb L, Escamilla J, Sanchez-Pena C, Camacho J (2004) Ether a go-go potassium channels as human cervical cancer markers. Cancer Res 64:6996–7001

    Article  CAS  PubMed  Google Scholar 

  117. Spitzner M, Ousingsawat J, Scheidt K, Kunzelmann K, Schreiber R (2007) Voltage-gated K+ channels support proliferation of colonic carcinoma cells. FASEB J 21:35–44

    Article  CAS  PubMed  Google Scholar 

  118. Ousingsawat J, Spitzner M, Puntheeranurak S, Terracciano L, Tornillo L, Bubendorf L, Kunzelmann K, Schreiber R (2007) Expression of voltage-gated potassium channels in human and mouse colonic carcinoma. Clin Cancer Res 13:824–831

    Article  CAS  PubMed  Google Scholar 

  119. Mulhall HJ, Hughes MP, Kazmi B, Lewis MP, Labeed FH (2013) Epithelial cancer cells exhibit different electrical properties when cultured in 2D and 3D environments. Biochim Biophys Acta 1830:5136–5141

    Article  CAS  PubMed  Google Scholar 

  120. Brooks TA, Hurley LH (2009) The role of supercoiling in transcriptional control of MYC and its importance in molecular therapeutics. Nat Rev Cancer 9:849–861

    Article  CAS  PubMed  Google Scholar 

  121. Hsu ST, Varnai P, Bugaut A, Reszka AP, Neidle S, Balasubramanian S (2009) A G-rich sequence within the c-kit oncogene promoter forms a parallel G-quadruplex having asymmetric G-tetrad dynamics. J Am Chem Soc 131:13399–13409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Agrawal P, Hatzakis E, Guo K, Carver M, Yang D (2013) Solution structure of the major G-quadruplex formed in the human VEGF promoter in K+: insights into loop interactions of the parallel G-quadruplexes. Nucleic Acids Res 41:10584–10592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Agrawal P, Lin C, Mathad RI, Carver M, Yang D (2014) The major G-quadruplex formed in the human BCL-2 proximal promoter adopts a parallel structure with a 13-nt loop in K+ solution. J Am Chem Soc 136:1750–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tateishi-Karimata H, Kawauchi K, Sugimoto N (2018) Destabilization of DNA G-quadruplexes by chemical environment changes during tumor progression facilitates transcription. J Am Chem Soc 140:642–651

    Article  CAS  PubMed  Google Scholar 

  125. Fay MM, Lyons SM, Ivanov P (2017) RNA G-quadruplexes in biology: principles and molecular mechanisms. J Mol Biol 429:2127–2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Song J, Perreault JP, Topisirovic I, Richard S (2016) RNA G-quadruplexes and their potential regulatory roles in translation. Translation (Austin) 4:e1244031

    Google Scholar 

  127. Bonnal S, Schaeffer C, Creancier L, Clamens S, Moine H, Prats AC, Vagner S (2003) A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. J Biol Chem 278:39330–39336

    Article  CAS  PubMed  Google Scholar 

  128. Cammas A, Dubrac A, Morel B, Lamaa A, Touriol C, Teulade-Fichou MP, Prats H, Millevoi S (2015) Stabilization of the G-quadruplex at the VEGF IRES represses cap-independent translation. RNA Biol 12:320–329

    Article  PubMed  PubMed Central  Google Scholar 

  129. Zhang Y, Yang M, Duncan S, Yang X, Abdelhamid MAS, Huang L, Zhang H, Benfey PN, Waller ZAE, Ding Y (2019) G-quadruplex structures trigger RNA phase separation. Nucleic Acids Res 47:11746–11754

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Teng Y, Tateishi-Karimata H, Sugimoto N (2020) RNA G-quadruplexes facilitate RNA accumulation in G-rich repeat expansions. Biochemistry 59:1972–1980

    Article  CAS  PubMed  Google Scholar 

  131. Amato J, Pagano A, Capasso D, Di Gaetano S, Giustiniano M, Novellino E, Randazzo A, Pagano B (2018) Targeting the BCL2 gene promoter G-quadruplex with a new class of furopyridazinone-based molecules. ChemMedChem 13:406–410

    Article  CAS  PubMed  Google Scholar 

  132. Amato J, Miglietta G, Morigi R, Iaccarino N, Locatelli A, Leoni A, Novellino E, Pagano B, Capranico G, Randazzo A (2020) Monohydrazone based G-quadruplex selective ligands induce DNA damage and genome instability in human cancer cells. J Med Chem 63:3090–3103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yaku H, Murashima T, Tateishi-Karimata H, Nakano S, Miyoshi D, Sugimoto N (2013) Study on effects of molecular crowding on G-quadruplex-ligand binding and ligand-mediated telomerase inhibition. Methods 64:19–27

    Article  CAS  PubMed  Google Scholar 

  134. Zou T, Sato S, Yasukawa R, Takeuchi R, Ozaki S, Fujii S, Takenaka S (2020) The Interaction of cyclic naphthalene diimide with G-quadruplex under molecular crowding condition. Molecules 25:668

    Article  CAS  PubMed Central  Google Scholar 

  135. Fay MM, Anderson PJ, Ivanov P (2017) ALS/FTD-associated C9ORF72 repeat RNA promotes phase transitions in vitro and in cells. Cell Rep 21:3573–3584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Jain A, Vale RD (2017) RNA phase transitions in repeat expansion disorders. Nature 546:243–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sobczak K, Michlewski G, de Mezer M, Kierzek E, Krol J, Olejniczak M, Kierzek R, Krzyzosiak WJ (2010) Structural diversity of triplet repeat RNAs. J Biol Chem 285:12755–12764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Galka-Marciniak P, Urbanek MO, Krzyzosiak WJ (2012) Triplet repeats in transcripts: structural insights into RNA toxicity. Biol Chem 393:1299–1315

    Article  CAS  PubMed  Google Scholar 

  139. Murakami T, Qamar S, Lin JQ, Schierle GS, Rees E, Miyashita A, Costa AR, Dodd RB, Chan FT, Michel CH, Kronenberg-Versteeg D, Li Y, Yang SP, Wakutani Y, Meadows W, Ferry RR, Dong L, Tartaglia GG, Favrin G, Lin WL, Dickson DW, Zhen M, Ron D, Schmitt-Ulms G, Fraser PE, Shneider NA, Holt C, Vendruscolo M, Kaminski CF, St George-Hyslop P (2015) ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88:678–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Conicella AE, Zerze GH, Mittal J, Fawzi NL (2016) ALS mutations disrupt phase separation mediated by alpha-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24:1537–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lin Y, Protter DS, Rosen MK, Parker R (2015) Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol Cell 60:208–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T, Taylor JP (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Riback JA, Katanski CD, Kear-Scott JL, Pilipenko EV, Rojek AE, Sosnick TR, Drummond DA (2017) Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168(1028–1040):e1019

    Google Scholar 

  144. Buchan JR (2014) mRNP granules. Assembly, function, and connections with disease. RNA Biol 11:1019–1030

    Article  PubMed  PubMed Central  Google Scholar 

  145. An H, Williams NG, Shelkovnikova TA (2018) NEAT1 and paraspeckles in neurodegenerative diseases: a missing lnc found? Noncoding RNA Res 3:243–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Simko EAJ, Liu H, Zhang T, Velasquez A, Teli S, Haeusler AR, Wang J (2020) G-quadruplexes offer a conserved structural motif for NONO recruitment to NEAT1 architectural lncRNA. Nucleic Acids Res 48:7421–7438

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Lloyd AC (2013) The regulation of cell size. Cell 154:1194–1205

    Article  CAS  PubMed  Google Scholar 

  148. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  PubMed  Google Scholar 

  149. Neurohr GE, Terry RL, Lengefeld J, Bonney M, Brittingham GP, Moretto F, Miettinen TP, Vaites LP, Soares LM, Paulo JA, Harper JW, Buratowski S, Manalis S, van Werven FJ, Holt LJ, Amon A (2019) Excessive cell growth causes cytoplasm dilution and contributes to senescence. Cell 176(1083–1097):e1018

    Google Scholar 

  150. Park S, Barnes R, Lin Y, Jeon B-j, Najafi S, Delaney KT, Fredrickson GH, Shea J-E, Hwang DS, Han S (2020) Dehydration entropy drives liquid–liquid phase separation by molecular crowding. Commun Chem 3:83

    Article  CAS  Google Scholar 

  151. Omer A, Patel D, Lian XJ, Sadek J, Di Marco S, Pause A, Gorospe M, Gallouzi IE (2018) Stress granules counteract senescence by sequestration of PAI-1. EMBO Rep 19:e44722

    Article  PubMed  PubMed Central  Google Scholar 

  152. Teixeira D, Sheth U, Valencia-Sanchez MA, Brengues M, Parker R (2005) Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11:371–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rousakis A, Vlanti A, Borbolis F, Roumelioti F, Kapetanou M, Syntichaki P (2014) Diverse functions of mRNA metabolism factors in stress defense and aging of Caenorhabditis elegans. PLoS One 9:e103365

    Article  PubMed  PubMed Central  Google Scholar 

  154. Teixeira D, Parker R (2007) Analysis of P-body assembly in Saccharomyces cerevisiae. Mol Biol Cell 18:2274–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hernandez-Verdun D (2011) Assembly and disassembly of the nucleolus during the cell cycle. Nucleus (Calcutta) 2:189–194

    Article  Google Scholar 

  156. Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Galganski L, Urbanek MO, Krzyzosiak WJ (2017) Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res 45:10350–10368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Morris GE (2008) The Cajal body. Biochim Biophys Acta 1783:2108–2115

    Article  CAS  PubMed  Google Scholar 

  159. Kiesslich A, von Mikecz A, Hemmerich P (2002) Cell cycle-dependent association of PML bodies with sites of active transcription in nuclei of mammalian cells. J Struct Biol 140:167–179

    Article  CAS  PubMed  Google Scholar 

  160. Dellaire G, Ching RW, Dehghani H, Ren Y, Bazett-Jones DP (2006) The number of PML nuclear bodies increases in early S phase by a fission mechanism. J Cell Sci 119:1026–1033

    Article  CAS  PubMed  Google Scholar 

  161. Buchwalter A, Hetzer MW (2017) Nucleolar expansion and elevated protein translation in premature aging. Nat Commun 8:328

    Article  PubMed  PubMed Central  Google Scholar 

  162. Lapinaite A, Simon B, Skjaerven L, Rakwalska-Bange M, Gabel F, Carlomagno T (2013) The structure of the box C/D enzyme reveals regulation of RNA methylation. Nature 502:519–523

    Article  CAS  PubMed  Google Scholar 

  163. Allain FH, Bouvet P, Dieckmann T, Feigon J (2000) Molecular basis of sequence-specific recognition of pre-ribosomal RNA by nucleolin. EMBO J 19:6870–6881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Fox AH, Lamond AI (2010) Paraspeckles. Cold Spring Harb Perspect Biol 2:a000687

    Article  PubMed  PubMed Central  Google Scholar 

  165. Tripathi V, Song DY, Zong X, Shevtsov SP, Hearn S, Fu XD, Dundr M, Prasanth KV (2012) SRSF1 regulates the assembly of pre-mRNA processing factors in nuclear speckles. Mol Biol Cell 23:3694–3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612

    Article  CAS  PubMed  Google Scholar 

  167. Meier UT (2017) RNA modification in Cajal bodies. RNA Biol 14:693–700

    Article  PubMed  Google Scholar 

  168. Richard P, Darzacq X, Bertrand E, Jady BE, Verheggen C, Kiss T (2003) A common sequence motif determines the Cajal body-specific localization of box H/ACA scaRNAs. EMBO J 22:4283–4293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Nizami Z, Deryusheva S, Gall JG (2010) The Cajal body and histone locus body. Cold Spring Harb Perspect Biol 2:a000653

    Article  PubMed  PubMed Central  Google Scholar 

  170. Duronio RJ, Marzluff WF (2017) Coordinating cell cycle-regulated histone gene expression through assembly and function of the histone locus body. RNA Biol 14:726–738

    Article  PubMed  PubMed Central  Google Scholar 

  171. Sun Y, Zhang Y, Aik WS, Yang XC, Marzluff WF, Walz T, Dominski Z, Tong L (2020) Structure of an active human histone pre-mRNA 3’-end processing machinery. Science 367:700–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lallemand-Breitenbach V, de The H (2010) PML nuclear bodies. Cold Spring Harb Perspect Biol 2:a000661

    Article  PubMed  PubMed Central  Google Scholar 

  173. Boisvert FM, Hendzel MJ, Bazett-Jones DP (2000) Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J Cell Biol 148:283–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Protter DSW, Parker R (2016) Principles and properties of stress granules. Trends Cell Biol 26:668–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lian XJ, Gallouzi IE (2009) Oxidative stress increases the number of stress granules in senescent cells and triggers a rapid decrease in p21waf1/cip1 translation. J Biol Chem 284:8877–8887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Anderson P, Kedersha N, Ivanov P (2015) Stress granules, P-bodies and cancer. Biochim Biophys Acta 1849:861–870

    Article  CAS  PubMed  Google Scholar 

  177. Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Yang Z, Jakymiw A, Wood MR, Eystathioy T, Rubin RL, Fritzler MJ, Chan EK (2004) GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation. J Cell Sci 117:5567–5578

    Article  CAS  PubMed  Google Scholar 

  179. Balagopal V, Parker R (2009) Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr Opin Cell Biol 21:403–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Jain S, Parker R (2013) The discovery and analysis of P bodies. Adv Exp Med Biol 768:23–43

    Article  CAS  PubMed  Google Scholar 

  181. Fromm SA, Kamenz J, Noldeke ER, Neu A, Zocher G, Sprangers R (2014) In vitro reconstitution of a cellular phase-transition process that involves the mRNA decapping machinery. Angew Chem Int Ed Engl 53:7354–7359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Nishimura K, Kumazawa T, Kuroda T, Katagiri N, Tsuchiya M, Goto N, Furumai R, Murayama A, Yanagisawa J, Kimura K (2015) Perturbation of ribosome biogenesis drives cells into senescence through 5S RNP-mediated p53 activation. Cell Rep 10:1310–1323

    Article  CAS  PubMed  Google Scholar 

  183. Mitrea DM, Cika JA, Stanley CB, Nourse A, Onuchic PL, Banerjee PR, Phillips AH, Park CG, Deniz AA, Kriwacki RW (2018) Self-interaction of NPM1 modulates multiple mechanisms of liquid-liquid phase separation. Nat Commun 9:842

    Article  PubMed  PubMed Central  Google Scholar 

  184. Sokolova E, Spruijt E, Hansen MMK, Dubuc E, Groen J, Chokkalingam V, Piruska A, Heus HA, Huck WTS (2013) Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. Proc Natl Acad Sci USA 110:11692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ge X, Luo D, Xu J (2011) Cell-free protein expression under macromolecular crowding conditions. PLoS One 6:e28707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mestre-Fos S, Penev PI, Suttapitugsakul S, Hu M, Ito C, Petrov AS, Wartell RM, Wu R, Williams LD (2019) G-quadruplexes in human ribosomal RNA. J Mol Biol 431:1940–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Chiarella S, De Cola A, Scaglione GL, Carletti E, Graziano V, Barcaroli D, Lo Sterzo C, Di Matteo A, Di Ilio C, Falini B, Arcovito A, De Laurenzi V, Federici L (2013) Nucleophosmin mutations alter its nucleolar localization by impairing G-quadruplex binding at ribosomal DNA. Nucleic Acids Res 41:3228–3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chung S, Lerner E, Jin Y, Kim S, Alhadid Y, Grimaud LW, Zhang IX, Knobler CM, Gelbart WM, Weiss S (2019) The effect of macromolecular crowding on single-round transcription by Escherichia coli RNA polymerase. Nucleic Acids Res 47:1440–1450

    Article  CAS  PubMed  Google Scholar 

  189. Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A, Stone MD, Margolis J, Peterson M, Markowski TW, Ingram MA, Nan Z, Forster C, Low WC, Schoser B, Somia NV, Clark HB, Schmechel S, Bitterman PB, Gourdon G, Swanson MS, Moseley M, Ranum LP (2011) Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci USA 108:260–265

    Article  CAS  PubMed  Google Scholar 

  190. White MR, Mitrea DM, Zhang P, Stanley CB, Cassidy DE, Nourse A, Phillips AH, Tolbert M, Taylor JP, Kriwacki RW (2019) C9orf72 Poly(PR) dipeptide repeats disturb biomolecular phase separation and disrupt nucleolar function. Mol Cell 74(713–728):e716

    Google Scholar 

  191. Marshall PR, Zhao Q, Li X, Wei W, Periyakaruppiah A, Zajaczkowski EL, Leighton LJ, Madugalle SU, Basic D, Wang Z, Yin J, Liau WS, Gupte A, Walkley CR, Bredy TW (2020) Dynamic regulation of Z-DNA in the mouse prefrontal cortex by the RNA-editing enzyme Adar1 is required for fear extinction. Nat Neurosci 23:718–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The researches in our laboratories were supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and the Japan Society for the Promotion of Science (JSPS), especially a Grant-in-Aid for Scientific Research on Innovative Areas “Chemistry for Multimolecular Crowding Biosystems” (JSPS KAKENHI Grant JP17H06351) and a Grant-in-Aid for Research Activity Start-up (19K23639), by the Hirao Taro Foundation of Konan Gakuen for Academic Research and by the Chubei Itoh Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Sugimoto.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, S., Sugimoto, N. New Insights into the Functions of Nucleic Acids Controlled by Cellular Microenvironments. Top Curr Chem (Z) 379, 17 (2021). https://doi.org/10.1007/s41061-021-00329-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-021-00329-7

Keywords

Navigation