Skip to main content
Log in

Seismic potential of megathrust in the Kumaun-Garhwal region of NW Himalaya: implications from geodetic and seismic strain rates

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

We analysed the geodetic and seismic strain rates for composite analysis of seismic hazard potential of the Kumaun-Garhwal region of Northwest Himalaya. The principal geodetic strain rate is estimated using plate motion measurements at 144 Global Positioning System (GPS) sites reported in past ~ 20 years in the region. A modified least square inversion approach that utilizes a distance-based scale factor on the uncertainty in the velocity data is applied to get a reliable estimate of geodetic strain rate. Results indicate extensive compression in the region with a mean rate of − 113 nano strain/year towards NNE in the Higher Himalaya. The principal seismic strain rate is calculated from the focal mechanism solutions of the earthquakes in the region using the Kostrov formulation. We analysed the geodetic strain rate together with seismic strain rate using seismicity catalogue of 50, 220 and 700 years and found that the orientation of principal strain rates are consistent with each other. However, the seismic strain rate estimated from 700 years catalogue is comparable with geodetic strain rate indicating the high accumulation of elastic strain energy in this region. Analysis of strain budget using geodetic and seismic moment rates of this region, suggest a large amount of stored strain energy of ~ 5E + 21 Nm in the past 700 years which has a potential to generate a megathrust earthquake (Mw ≥ 8) in the present scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ader T, Avouac JP, Liu-Zeng J, Lyon-Caen H, Bollinger L, Galetzka J, Genrich J, Thomas M, Chanard K, Sapkota SN, Rajaure S, Shresta P, Ding L, Flouzat M (2012) Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: implications for seismic hazard. J Geophys Res 117:B04403

    Google Scholar 

  • Adhikari LB, Gautam UP, Koirala BP, Bhattarai M, Kandel T, Gupta RM, Timsina C, Maharjan N, Maharjan K, Dahal T, Hoste-Colomer R (2015) The aftershock sequence of the 2015 April 25 Gorkha-Nepal earthquake. Geophys Suppl Mon Not R Astron Soc 203(3):2119–2124

    Google Scholar 

  • Aitchison JC, Ali JR, Davis AM (2007) When and where did India and Asia collide? J Geophys Res Solid Earth. https://doi.org/10.1029/2006JB004706

    Article  Google Scholar 

  • Aki K (1967) Scaling law of seismic spectrum. J Geophys Res 72(4):1217–1231

    Google Scholar 

  • Aki K, Richards PG (1980) Quantitative seismology: Theory and Methods, vol 1 & 2. W.H. Freeman & Co., San Francisco

    Google Scholar 

  • Allmendinger RW, Reilinger R, Loveless J (2007) Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. Tectonics. https://doi.org/10.1029/2006TC002030

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geodesy 85(8):57–473

    Google Scholar 

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF 2005 A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys ResSolid Earth. https://doi.org/10.1029/2007JB004949

    Article  Google Scholar 

  • Ambraseys N, Bilham R (2000) A note on the Kangra M s= 7.8 earthquake of 4 April 1905. Curr Sci 79(1):45–50

    Google Scholar 

  • Ambraseys N, Douglas J (2004) Magnitude calibration of north Indian earthquakes. Geophys J Int 159:165–206

    Google Scholar 

  • Anderson JG (1979) Estimating the seismicity from geological structure for seismic-risk studies. Bull Seism Soc Am 69:135–158

    Google Scholar 

  • Arora S, Malik JN (2017) Overestimation of the earthquake hazard along the Himalaya: constraints in bracketing of medieval earthquakes from paleoseismic studies. Geosci Lett 4(1):19

    Google Scholar 

  • Auden JB (1935) Traverses in the Himalaya. Rec Geol Soc India 69:123–167

    Google Scholar 

  • Avouac JP, Meng L, Wei S, Wang T, Ampuero JP (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nat Geosci 8(9):708–711

    Google Scholar 

  • Bai L, Klemperer SL, Mori J, Karplus MS, Ding L, Liu H, Li G, Song B, Dhakal S (2019) Lateral variation of the Main Himalayan Thrust controls the rupture length of the 2015 Gorkha earthquake in Nepal. Sci Adv 5(6):eaav023

    Google Scholar 

  • Baillard C, Lyon-Caen H, Bollinger L, Rietbrock A, Letort J, Adhikari LB (2017) Automatic analysis of the Gorkha earthquake aftershock sequence: evidences of structurally segmented seismicity. Geophys J Int 209(2):1111–1125

    Google Scholar 

  • Banerjee P, Bürgmann R, Nagarajan B, Apel E (2008) Intraplate deformation of the Indian subcontinent. Geophys Res Lett. https://doi.org/10.1029/2008GL035468

    Article  Google Scholar 

  • Bilham R, Ambraseys N (2005) Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500–2000. Curr Sci 88:1658–1663

    Google Scholar 

  • Bilham R, Mencin D, Bendick R, Bürgmann R (2017) Implications for elastic energy storage in the Himalaya from the Gorkha 2015 earthquake and other incomplete ruptures of the Main Himalayan Thrust. Quatern Int 462:3–21

    Google Scholar 

  • Bilham R, Gaur VK, Molnar P (2001) Himalayan Seismic Hazard. Science 293:1442–1444

    Google Scholar 

  • Bilham R (2019) Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential. Geol Soc Lond Spec Publ 483(1):423–482

    Google Scholar 

  • Bird P, Kreemer C (2015) Revised tectonic forecast of global shallow seismicity based on version 2.1 of the Global Strain Rate Map. Bull Seismol Soc Am 105(1):152–166

    Google Scholar 

  • Bollinger L, Avouac JP, Cattin R, Pandey MR (2004) Stress buildup in the Himalaya. J Geophys Res Solid Earth. https://doi.org/10.1029/2003JB002911

    Article  Google Scholar 

  • Bollinger L, Tapponnier P, Sapkota SN, Klinger Y (2016) Slip deficit in central Nepal: Omen for a repeat of the 1344 AD earthquake? Earth Planets Space 68(1):12

    Google Scholar 

  • Brune JN (1968) Seismic moment, seismicity, and slip rate along major fault zones. J Geophys Res 73:777–784

    Google Scholar 

  • Caldwell WB, Klemperer SL, Lawrence JF, Rai SS, Ashish (2013) Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with receiver function CCP stacking. Earth Planet Sci Lett 367:15–27. https://doi.org/10.1016/j.epsl.2013.02.009

    Article  Google Scholar 

  • Dal Zilio L, Jolivet R, van Dinther Y (2020) Segmentation of the Main Himalayan Thrust illuminated by Bayesian inference of interseismic coupling. Geophys Res Lett 47(4):e2019GL086424

    Google Scholar 

  • Dumka RK, Kotlia BS, Kothyari GCh, Paikrey J, Dimri S (2018) Detection of high and moderate crustal strain zones in Uttarakhand Himalaya India. Acta Geod Geophys 53(3):503–521

    Google Scholar 

  • Gahalaut VK, Kundu B (2012) Possible influence of subducting ridges on the Himalayan arc and on the ruptures of great and major Himalayan earthquakes. Gondwana Res 21(4):1080–1088

    Google Scholar 

  • Galetzka J, Melgar D, Genrich JF, Geng J, Owen S, Lindsey EO, Xu X, Bock Y, Avouac JP, Adhikari LB, Upreti BN (2015) Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake. Nepal Sc 349(6252):1091–1095

    Google Scholar 

  • Gansser A (1964) Geology of the Himalayas. Interscience Publishers, London, p 273p

    Google Scholar 

  • Ghazoui Z, Bertrand S, Vanneste K, Yokoyama Y, Nomade J, Gajurel AP, van der Beek PA (2019) Potentially large post-1505 AD earthquakes in western Nepal revealed by a lake sediment record. Nat Commun 10(1):1–9

    Google Scholar 

  • Goda K, Kiyota T, Pokhrel RM, Chiaro G, Katagiri T, Sharma K, Wilkinson S (2015) The 2015 Gorkha Nepal earthquake: insights from earthquake damage survey. Front Built Environ 1:8. https://doi.org/10.3389/fbuil.2015.00008

    Article  Google Scholar 

  • Grandin R, Vallée M, Satriano C, Lacassin R, Klinger Y, Simoes M, Bollinger L (2015) Rupture process of the Mw= 7.9 2015 Gorkha earthquake (Nepal): Insights into Himalayan megathrust segmentation. Geophys Res 42(20):8373–8382

    Google Scholar 

  • Hammond WC, Thatcher W (2004) Contemporary tectonic deformation of the Basin and Range province, western United States: 10 years of observation with the Global Positioning System. J Geophys Res 109:B08403. https://doi.org/10.1029/2003JB002746

    Article  Google Scholar 

  • Hodges KV (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. Geol Soc Am Bull 112(3):324–350

    Google Scholar 

  • Jade S, Mir RR, Vivek CG, Shrungeshwara TS, Parvez IA, Chandra R, Babu DS, Gupta SV, Rajana SSK, Gaur VK (2020) Crustal deformation rates in Kashmir valley and adjoining regions from continuous GPS measurements from 2008 to 2019. Sci Rep 10(1):1–11

    Google Scholar 

  • Jade S, Mukul M, GaurVK KK, Shrungeshwar TS, Satyal GS, Dumka RK, Jagannathan S, Ananda MB, Kumar PD, Banerjee S (2014) Contemporary deformation in the Kashmir-Himachal, Garhwal and Kumaon Himalaya: significant insights from 1995–2008 GPS time series. J Geodesy 88(6):539–557

    Google Scholar 

  • Jade S, Shrungeshwara TS, Kumar K, Choudhury P, Dumka RK, Bhu H (2017) India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015. Sci Rep 7(1):1–16

    Google Scholar 

  • Jain AK (1971) Stratigraphy and tectonics of Lesser Himalayan region of Uttarkashi, Garwhal, Himalaya. Himalayan Geol 1:25–58

    Google Scholar 

  • Jayangondaperumal R, Mishra RL, Priyanka RS, Yadav RK, Mohanty DP, Pandey A, Singh I, Anil A, Dash S (2020) Active tectonics of Himalaya, Rift Basins in Central India and those related to crustal deformation at different time scales. Proc Indian Natn Sci Acad 86(1):445–458

    Google Scholar 

  • Jenny S, Saskia G, Giardini D, Kahle H-G (2004) Earthquake recurrence parameters from seismic and geodetic strain rates in the eastern Mediterranean. Geophys J Int 157:1331–1347. https://doi.org/10.1111/j.1365-246X.2004.02261.x

    Article  Google Scholar 

  • Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82:2981–2987

    Google Scholar 

  • Khattri KN (1987) Great earthquakes, seismicity gaps and potential for earthquake disaster along the Himalaya plate boundary. Tectonophysics 138(1):79–92

    Google Scholar 

  • Khattri K, Wyss M (1978) Precursory variation of seismicity rate in the Assam area. India Geology 6(11):685–688

    Google Scholar 

  • Kostrov B (1974) Seismic moment and energy of earthquakes and seismic flow of rock. Izv Acad Sci USSR Phys Solid Earth 97:23–44

    Google Scholar 

  • Kothyari GC, Kandregula RS, Luirei K (2017) Morphotectonic records of neotectonic activity in the vicinity of North Almora Thrust Zone, Central Kumaun Himalaya. Geomorphology 285:272–286

    Google Scholar 

  • Kreemer C, Holt WE, Haines AJ (2002) The global moment rate distribution within plate boundary zones. Plate Boundary Zones 30:173–190

    Google Scholar 

  • Kumahara Y, Jayangondaperumal R (2013) Paleoseismic evidence of a surface rupture along the Northwestern Himalayan Frontal Thrust (HFT). Geomorphology 180:47–56

    Google Scholar 

  • Kumar R, Gupta SC, Kumar A (2015) Determination and identification of focal mechanism solutions for Himalayan earthquakes from waveform inversion employing ISOLA software. Nat Hazards 76(2):1163–1181

    Google Scholar 

  • Kumar S, Wesnousky SG, Rockwell TK, Briggs RW, Thakur VC, Jayangondaperumal R (2006) Palæoseismic evidence of great surface rupture earthquakes along the Indian Himalaya. J Geophys Res 111:B03304. https://doi.org/10.1029/2004JB003309

    Article  Google Scholar 

  • Lindsey EO, Natsuaki R, Xu X, Shimada M, Hashimoto M, Melgar D, Sandwell DT (2015) Line-of-sight displacement from ALOS-2 interferometry: Mw 7.8 Gorkha Earthquake and Mw 7.3 aftershock. Geophys Res Lett 42(16):6655–6661

    Google Scholar 

  • Mahesh P, Gupta S, Saikia U, Rai SS (2015) Seismotectonics and crustal stress field in the Kumaon-Garhwal Himalaya. Tectonophysics 655:124–138

    Google Scholar 

  • Malik JN, Naik SP, Sahoo S, Okumura K, Mohanty A (2017) Paleoseismic evidence of the CE 1505 (?) and CE 1803 earthquakes from the foothill zone of the Kumaon Himalaya along the Himalayan Frontal Thrust (HFT), India. Tectonophysics 714:133–145

    Google Scholar 

  • Masson F, Chery J, Hatzfeld D, Martinod J, Vernant P, Tavakoli F, Ghafory-Ashtiani M (2005) Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data. Geophys J Int 160:217–226

    Google Scholar 

  • Misra RC, Sharma RP (1967) Geology of the Devi-dhura area, Almora, U.P. J Geol Soc India 8:110–118

    Google Scholar 

  • Molnar P (1979) Earthquake recurrence intervals and plate tectonics. Bull Seism Soc Am 69:115–133

    Google Scholar 

  • Molnar P, Tapponnier P (1975) Cenozoic tectonics of Asia: effects of a continental collision. Science 189(4201):419–426

    Google Scholar 

  • Negi SS, Paul A, Cesca S, Kamal KM, Mahesh P, Gupta S (2017) Crustal velocity structure and earthquake processes of Garhwal-Kumaun Himalaya: Constraints from regional waveform inversion and array beam modeling. Tectonophysics 712–713:45–63

    Google Scholar 

  • Palano M, Cannavò F, Ferranti L, Mattia M, Mazzella ME (2011) Strain and stress fields in the Southern Apennines (Italy) constrained by geodetic, seismological and borehole data. Geophys J Int 187(3):1270–1282

    Google Scholar 

  • Pancha A, Anderson JG, Kreemer C (2006) Comparison of seismic and geodetic scalar moment rates across the Basin and Range Province. Bull Seismol Soc Am 96(1):11–32

    Google Scholar 

  • Pandey MR, Molnar P (1988) The distribution of intensity of the Bihar-Nepal earthquake of 15 January 1934 andbounds on the extent of the rupture zone. J Geol Soc Nepal 5:22–44

    Google Scholar 

  • Ponraj M, Amirtharaj S, Sunil P, Saji AP, Kumar KV, Arora S, Reddy C, Begum S (2019) An assessment of present-day crustal deformation in the Kumaun Himalaya from GPS observations. J Asian Earth Sci 176:274–280

    Google Scholar 

  • Ponraj M, Miura S, Reddy C, Amirtharaj S, Mahajan SH (2011) Slip distribution beneath the Central and Western Himalaya inferred from GPS observations. Geophys J Int 185:724–736

    Google Scholar 

  • Ponraj M, Miura S, Reddy CD, Prajapati SK, Amirtharaj S, Mahajan SH (2010) Estimation of strain distribution using GPS measurements in the Kumaun region of Lesser Himalaya. J Asian Earth Sci 39(6):658–667

    Google Scholar 

  • Prasath RA, Paul A, Singh S (2017) Upper crustal stress and seismotectonics of the Garhwal Himalaya using small-to-moderate earthquakes: implications to the local structures and free fluids. J Asian Earth Sci 135:198–211

    Google Scholar 

  • Rajendran CP, Rajendran K (2005) The status of central seismic gap: a perspectivebased on the spatial and temporal aspects of the large Himalayan earthquakes. Tectonophysics 395:19–39

    Google Scholar 

  • Rajendran CP, John B, Rajendran K (2015) Medieval pulse of great earthquakes in the central Himalaya: Viewing past activities on the frontal thrust. J Geophys Res Solid Earth 120(3):1623–1641

    Google Scholar 

  • Rajendran CP, John B, Anandasabari K, Sanwal J, Rajendran K, Kumar P, Chopra S (2018) On the paleoseismic evidence of the 1803 earthquake rupture (or lack of it) along the frontal thrust of the Kumaun Himalaya. Tectonophysics 722:227–234

    Google Scholar 

  • Rawat G, Arora BR, Gupta PK (2014) Electrical resistivity cross-section across the Garhwal Himalaya: Proxy to fluid-seismicity linkage. Tectonophysics 637:68–79

    Google Scholar 

  • Richards A, Argles T, Harris N, Parrish R, Ahmad T, Darbyshire F, Draganits E (2005) Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet Sci Lett 236(3–4):773–796. https://doi.org/10.1016/j.epsl.2005.05.034

    Article  Google Scholar 

  • Savage JC, Simpson RW (1997) Surface strain accumulation and the seismic moment tensor. Bull Seism Soc Am 87:1345–1353

    Google Scholar 

  • Searle MP, Windley BF, Coward MP, Cooper DJW, Rex AJ, Rex D, Tingdong L, Xuchang X, Jan MQ, Thakur VC, Kumar S (1987) The closing of Tethys and the tectonics of the Himalaya. Geol Soc Am Bull 98(6):678–701

    Google Scholar 

  • Seeber L and J Armbruster (1981) Great detachment earthquakes along the Himalayan Arc and long-term forecasting. In: Simpson DW, Richards PG eds. Earthquake prediction: an international review. Maurice Ewing series, vol 4, p 259–277. American Geophysical Union.

  • Sharma Y, Pasari S, Ching KE, Dikshit O, Kato T, Malik JN, Chang CP, Yen JY (2020) Spatial distribution of earthquake potential along the Himalayan arc. Tectonophysics 791:228556

    Google Scholar 

  • Shen-Tu B, Holt WE, Haines AJ (1998) Contemporary kinematics of the Western United states determined from earthquake moment tensors, very long base interferometry, and GPS observations. J Geophys Res 103(B8):18087–18117

    Google Scholar 

  • Srivastava P, Mitra G (1994) Thrust geometries and deep structure of the Outer and Lesser Himalaya, Kumaon and Garhwal (India): Implications for evolution of the Himalayan fold-and-thrust belt. Tectonics 13:89–109. https://doi.org/10.1029/93TC01130

    Article  Google Scholar 

  • Stevens VL, Avouac JP (2015) Interseismic coupling on the main Himalayan thrust. Geophys Res Lett 42(14):5828–5837

    Google Scholar 

  • Stevens VL, Avouac JP (2016) Millenary Mw> 9.0 earthquakes required by geodetic strain in the Himalaya. Geophys Res Lett 43(3):1118–1123

    Google Scholar 

  • Szeliga W, Hough S, Martin S, Bilham R (2010) Intensity, magnitude, location, and attenuation in India for felt earthquakes since 1762. Bull Seismol Soc Am 100(2):570–584

    Google Scholar 

  • Teza G, Pesci A, Galgaro A (2008) Grid_strain and grid_strain3: software packages for strain field computation in 2D and 3D environment. Comput Geosci 34(9):1142–1153

    Google Scholar 

  • Valdiya KS (1980) Geology of Kumaun Lesser Himalaya. Wadia Institute of Himalayan Geology, Dehradun, p 291

    Google Scholar 

  • Valdiya KS (1976) Structural set-up of the Kumaun Lesser Himalya. Himalaya Proc Intern Colloq Geol Ecol Himal 268:235–286

    Google Scholar 

  • Verma M, Sutar AK, Bansal BK (2017) Source parameters of 1st April 2015 Chamoli earthquake (Mw 4.8) vis-à-vis seismotectonics of the region. J Geol Soc India 89(5):491-496

    Google Scholar 

  • Ward SN (1998) On the consistency of earthquake moment rates, geological fault data, and space geodetic strain: the United States. Geophys J Int 134:172–186

    Google Scholar 

  • Wesnousky SG (2020) Great pending Himalaya earthquakes. Seismol Soc Am 91(6):3334–3342

    Google Scholar 

  • Wesnousky SG, Kumar S, Mahindra R, Thakur VC (1999) Uplift and convergence along the Himalayan Frontal Thrust of India. Tectonics 18:967–976

    Google Scholar 

  • Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72(3):373–382

    Google Scholar 

  • Working Group on California Earthquake Probabilities (1995) Seismic hazards in southern California: probable earthquakes, 1994–2024. Bull Seism Soc Am 85:379–439

    Google Scholar 

  • Yadav RK, Gahalaut VK, Bansal AK (2020) Tectonic and non-tectonic crustal deformation in Kumaun Garhwal Himalaya. Quat Int. https://doi.org/10.1016/j.quaint.2020.10.011 (in press)

    Article  Google Scholar 

  • Yadav RK, Gahalaut VK, Bansal AK, Sati SP, Catherine J, Gautam P, Kumar K, Rana N (2019) Strong seismic coupling underneath Garhwal-Kumaun region, NW Himalaya, India. Earth Planet Sci Lett 506:8–14

    Google Scholar 

  • Yadav RK, Kundu B, Gahalaut K, Gahalaut VK (2018) The 12 May 2015 Kodari earthquake (Mw 7.3) in Central Nepal: delayed triggering by the 25 April 2015 Gorkha earthquake (Mw 7..8). Curr Sci 114(7):1534

    Google Scholar 

  • Yadav RK, Roy PNS, Gupta SK, Khan PK, Catherine JK, Prajapati SK, Kumar A, Puviarasan N, Bhu H, Devachandra M (2017) Rupture model of Mw 7.8 2015 Gorkha, Nepal earthquake: constraints from GPS measurements of coseismic offsets. J Asian Earth Sci 133:56–61

    Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 76(1–2):1–131

    Google Scholar 

  • Zuo R, Qu C, Shan X, Zhang G, Song X (2016) Coseismic deformation fields and a fault slip model for the Mw7. 8 mainshock and Mw7. 3 aftershock of the Gorkha-Nepal 2015 earthquake derived from Sentinel-1A SAR interferometry. Tectonophysics 686:158–169

    Google Scholar 

Download references

Acknowledgement

Authors acknowledge the support of Head, CSIR-4PI for the GNSS programme. Authors are thankful to two anonymous reviewers for their constructive comments and suggestions on the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sapna Ghavri.

Supplementary Information

Below is the link to the electronic supplementary material.

531_2021_2023_MOESM1_ESM.docx

Table S1: Site velocity in ITRF08 and India fixed plate frame. Table S2: Strain rate at high and mean significant grid points. The maximum strain Emax is the change of length per unit-length in the direction of maximum extension, positive for extensions (DOCX 201 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghavri, S., Jade, S. Seismic potential of megathrust in the Kumaun-Garhwal region of NW Himalaya: implications from geodetic and seismic strain rates. Int J Earth Sci (Geol Rundsch) 110, 1439–1452 (2021). https://doi.org/10.1007/s00531-021-02023-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-021-02023-x

Keywords

Navigation