Skip to main content

Advertisement

Log in

Investment in children, social security, and intragenerational risk sharing

  • Published:
International Tax and Public Finance Aims and scope Submit manuscript

Extend your filial piety for your aged parents to all the aged, and extend your care for your own children to all children.

— Mencius (372 BC – 289 BC, the “Second Sage” of Confucianism)

Abstract

We analyze the role of pay-as-you-go social security in intragenerational risk sharing in an overlapping-generations model with individual heterogeneity. Parents invest in their children’s education in state schools in exchange for old-age financial support. Due to random factors such as luck in the job market, children may have different earning capacities despite that they receive the same education. Without social security, a parent gets a transfer payment from her own child, so the received amount is uncertain as it depends on the child’s earnings. The social security scheme, which essentially serves to pool transfer contributions from all children and then redistribute them equally to each parent, insures parents against the risk of educational investments. Our model shows that social security stimulates educational spending, enhances labor earnings, and increases ex ante individual utility. However, it may worsen ex post intragenerational inequality of lifetime income.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Ehrlich and Lui (1991) establish a model in which parents invest in their children’s education and expect financial support from their children when they become old. This parent–child interaction is vividly described as a mutually productive “intergenerational trade.”

  2. Social security also serves some other important purposes, such as redistributing wealth (Boadway and Marchand 1995; Deaton et al. 2002), giving employees more leisure time (Cremer et al. 2007), promoting growth in poor countries (Boadway 2006; Glomm and Kaganovich 2008), encouraging life-cycle savings (Bloom et al. 2007), reducing family formation and fertility (Ehrlich and Kim 2007), tackling the externality associated with fertility and human capital accumulation (Cremer et al. 2011), and attenuating the response of career lengths to earnings shocks (Ljungqvist and Sargent 2014).

  3. See Enders and Lapan (1982), Gordon and Varian (1988), Fuster et al. (2003) and Ball and Mankiw (2007).

  4. A social norm that stipulates people to transfer a fixed fraction of their wages to support their parents’ old-age consumption can be sustained in a Nash equilibrium. Anyone who violates the social norm will expect that his child will leave him uncared in his old age, deterring deviations. See Ehrlich and Lui (1991) and Becker (1993).

  5. For example, Arteaga (2018) finds evidence that an employee’s wage is positively related to her human capital and her employer’s impression of her performance during the recruitment process. Pluchino et al. (2019) create a computer model to predict that luck is more important than talent for determining one’s career success.

  6. In practice, a retiree’s pension may depend on a range of factors such as her age, marital status, and tax payment. For example, the poor receive substantial retirement benefits even though they contribute little in young age, while the rich get back only a small fraction of tax contributions through pensions. Our stylized model addresses the redistributive mechanism of social security, as it works in many developed countries. Given the key role of social security in wealth redistribution, our results will hold qualitatively even when more practical issues are taken into account.

References

  • Abel, A., Mankiw, G., Summers, L., & Zeckhauser, R. (1989). Assessing dynamic efficiency: Theory and evidence. Review of Economic Studies, 56(1), 1–19.

    Article  Google Scholar 

  • Arteaga, C. (2018). The effect of human capital on earnings: Evidence from a reform at Colombia’s top university. Journal of Public Economics, 157, 212–225.

    Article  Google Scholar 

  • Baland, J.-M., & Robinson, J. (2000). Is child labor inefficient? Journal of Political Economy, 108(4), 663–679.

    Article  Google Scholar 

  • Ball, L., & Mankiw, G. (2007). Intergenerational risk sharing in the spirit of Arrow, Debreu, and Rawls, with applications to social security design. Journal of Political Economy, 115(4), 523–547.

    Article  Google Scholar 

  • Barro, R. J. (1974). Are government bonds net wealth? Journal of Political Economy, 82(6), 1095–1117.

    Article  Google Scholar 

  • Becker, G. S. (1974). A theory of social interactions. Journal of Political Economy, 82(6), 1063–1093.

    Article  Google Scholar 

  • Becker, G. S. (1993). Nobel lecture: The economic way of looking at behavior. Journal of Political Economy, 101(3), 385–409.

    Article  Google Scholar 

  • Becker, G. S., & Gregg Lewis, H. (1973). On the interaction between the quantity and quality of children. Journal of Political Economy, 81(2), S279–S288.

    Article  Google Scholar 

  • Bellettini, G., & Ceroni, C. B. (2000). Social security expenditure and economic growth: An empirical assessment. Research in Economics, 54(3), 249–275.

    Article  Google Scholar 

  • Bloom, D., Canning, D., Mansfield, R., & Moore, M. (2007). Demographic change, social security systems, and savings. Journal of Monetary Economics, 54(1), 92–114.

    Article  Google Scholar 

  • Boadway, R. (2006). Intergovernmental redistributive transfers: Efficiency and equity. Handbook of fiscal federalism, Chapter 14 (pp. 355–380). Cheltenham: Edward Elgar.

    Google Scholar 

  • Boadway, R., & Keen, M. (2000). Redistribution. In A. B. Atkinson & F. Bourguignon (Eds.), Handbook of income distribution, Chapter 12 (Vol. 1, pp. 677–789). New York: Elsevier.

    Chapter  Google Scholar 

  • Boadway, R., & Marchand, M. (1995). The use of public expenditures for redistributive purposes. Oxford Economic Papers, 47(1), 45–59.

    Article  Google Scholar 

  • Bowles, S., Gintis, H., & Osborne, M. (2001). The determinants of earnings: A behavioral approach. Journal of Economic Literature, 39(4), 1137–1176.

    Article  Google Scholar 

  • Bozio, A., Emmerson, C., O’Dea, C., & Tetlow, G. (2017). Do the rich save more? Evidence from linked survey and administrative data. Oxford Economic Papers, 69(4), 1101–1119.

    Google Scholar 

  • Brown, C. (1980). Equalizing differences in the labor market. Quarterly Journal of Economics, 94(1), 113–134.

    Article  Google Scholar 

  • Chakrabarti, S., Lord, W., & Rangazas, P. (1993). Uncertain altruism and investment in children. American Economic Review, 83(4), 994–1002.

    Google Scholar 

  • Cheung, S. N. S. (1972). The enforcement of property rights in children, and the marriage contract. Economic Journal, 82(326), 641–657.

    Article  Google Scholar 

  • Cox, D., & Stark, O. (2005). On the demand for grandchildren: Tied transfers and the demonstration effect. Journal of Public Economics, 89(9–10), 1665–1697.

    Article  Google Scholar 

  • Cremer, H., Gahvari, F., & Pestieau, P. (2006). Pensions with endogenous and stochastic fertility. Journal of Public Economics, 90(12), 2303–2321.

    Article  Google Scholar 

  • Cremer, H., Gahvari, F., & Pestieau, P. (2011). Fertility, human capital accumulation, and the pension system. Journal of Public Economics, 95(11–12), 1272–1279.

    Article  Google Scholar 

  • Cremer, H., Lozachmeur, J.-M., & Pestieau, P. (2007). Social security and retirement decision: A positive and normative approach. Journal of Economic Surveys, 22(2), 213–233.

    Article  Google Scholar 

  • Cremer, H., & Roeder, K. (2017). Social insurance with competitive insurance markets and risk misperception. Journal of Public Economics, 146(C), 138–147.

    Article  Google Scholar 

  • de la Croix, D., & Doepke, M. (2004). Public versus private education when differential fertility matters. Journal of Development Economics, 73(2), 607–629.

    Article  Google Scholar 

  • de la Croix, D., & Doepke, M. (2009). To segregate or to integrate: Education politics and democracy. Review of Economic Studies, 76(2), 597–628.

    Article  Google Scholar 

  • de la Croix, D., & Michel, P. (2002). A theory of economic growth: Dynamics and policy in overlapping generations. New York: Cambridge University Press.

    Book  Google Scholar 

  • Deaton, A., Gourinchas, P.-O., & Paxson, C. (2002). Social security and inequality over the life cycle. In M. Feldstein & J. Liebman (Eds.), The distributional aspects of social security and social security reform (pp. 115–148). Chicago: University of Chicago Press.

    Chapter  Google Scholar 

  • Diamond, P. (1977). A framework for social security analysis. Journal of Public Economics, 8(3), 275–298.

    Article  Google Scholar 

  • Drèze, J., & Khera, R. (2017). Recent social security initiatives in India. World Development, 98, 555–572.

    Article  Google Scholar 

  • Dynan, K., Skinner, J., & Zeldes, S. (2004). Do the rich save more? Journal of Political Economy, 112(2), 397–444.

    Article  Google Scholar 

  • Echevarría, C. A., & Iza, A. (2006). Life expectancy, human capital, social security and growth. Journal of Public Economics, 90(12), 2323–2349.

    Article  Google Scholar 

  • Ehrlich, I., & Kim, J. (2007). Social security and demographic trends: Theory and evidence from the international experience. Review of Economic Dynamics, 10(1), 55–77.

    Article  Google Scholar 

  • Ehrlich, I., & Lui, F. T. (1991). Intergenerational trade, longevity, and economic growth. Journal of Political Economy, 99(5), 1029–1059.

    Article  Google Scholar 

  • Ehrlich, I., & Lui, F. T. (1998). Social security, the family, and economic growth. Economic Inquiry, 36(3), 390–409.

    Article  Google Scholar 

  • Enders, W., & Lapan, H. E. (1982). Social security taxation and intergenerational risk sharing. International Economic Review, 23(3), 647–658.

    Article  Google Scholar 

  • Fafchamps, M., & Lund, S. (2003). Risk-sharing networks in rural Philippines. Journal of Development Economics, 71(2), 261–287.

    Article  Google Scholar 

  • Fan, S., & Zhang, J. (2013). Differential fertility and intergenerational mobility under private versus public education. Journal of Population Economics, 26(3), 907–941.

    Article  Google Scholar 

  • Fleurbaey, M. (2008). Fairness, responsibility, and welfare. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Fleurbaey, M. (2018). Welfare economics, risk and uncertainty. Canadian Journal of Economics, 51(1), 5–40.

    Article  Google Scholar 

  • Fuster, L., İmrohoroğlu, A., & İmrohoroğlu, S. (2003). A welfare analysis of social security in a dynastic framework. International Economic Review, 44(4), 1247–1274.

    Article  Google Scholar 

  • Galor, O., & Weil, D. (2000). Population, technology, and growth: From Malthusian stag-nation to the demographic transition and beyond. American Economic Review, 90(4), 806–828.

    Article  Google Scholar 

  • Gandelman, N. (2017). Do the rich save more in Latin America? Journal of Economic Inequality, 15(1), 75–92.

    Article  Google Scholar 

  • Glomm, G., & Kaganovich, M. (2008). Social security, public education and the growth-inequality relationship. European Economic Review, 52(6), 1009–1034.

    Article  Google Scholar 

  • Glomm, G., & Ravikumar, B. (1992). Public versus private investment in human capital: Endogenous growth and income inequality. Journal of Political Economy, 100(4), 818–834.

    Article  Google Scholar 

  • Gokhale, J., Kotlikoff, L. J., Sefton, J., & Weale, M. (2001). Simulating the transmission of wealth inequality via bequests. Journal of Public Economics, 79(1), 93–128.

    Article  Google Scholar 

  • Gordon, R. H., & Varian, H. R. (1988). Intergenerational risk sharing. Journal of Public Economics, 37(2), 185–202.

    Article  Google Scholar 

  • Hartog, J., van Ophem, H., & Bajdechi, S. M. (2007). Simulating the risk of investment in human capital. Education Economics, 15(3), 259–275.

    Article  Google Scholar 

  • Krueger, D., & Kubler, F. (2002). Intergenerational risk-sharing via social security when financial markets are incomplete. American Economic Review, 92(2), 407–410.

    Article  Google Scholar 

  • Lee, C.-C., & Chang, C.-P. (2006). Social security expenditure and GDP in OECD countries: A cointegrated panel analysis. International Economic Journal, 20(3), 303–320.

    Article  Google Scholar 

  • Ljungqvist, L., & Sargent, T. J. (2014). Career length: Effects of curvature of earnings profiles, earnings shocks, taxes, and social security. Review of Economic Dynamics, 17(1), 1–20.

    Article  Google Scholar 

  • Lucas, R., Jr. (1992). On efficiency and distribution. Economic Journal, 102(411), 233–247.

    Article  Google Scholar 

  • Luttmer, E., & Samwick, A. (2018). The welfare cost of perceived policy uncertainty: Evidence from social security. American Economic Review, 108(2), 275–307.

    Article  Google Scholar 

  • Merton, R. C. (1983). On the role of social security as a means for efficient risk sharing in an economy where human capital is not tradable. In Z. Bodie & J. Shoven (Eds.), Financial aspects of the United States pension system (pp. 325–358). Chicago: University of Chicago Press.

    Google Scholar 

  • Nishiyama, S., & Smetters, K. (2007). Does social security privatization produce efficiency gains? Quarterly Journal of Economics, 122(4), 1677–1719.

    Article  Google Scholar 

  • Organisation for Economic Cooperation and Development (OECD). (2020). General Government Spending (Indicator). https://doi.org/10.1787/a31cbf4d-en. Accessed 5 February 2020.

  • Pestieau, P., & Lefebvre, M. (2018). The welfare state in Europe: Economic and social perspectives (2nd ed.). Oxford: Oxford University Press.

    Book  Google Scholar 

  • Pestieau, P., & Possen, U. M. (1979). A model of wealth distribution. Econometrica, 47(3), 761–772.

    Article  Google Scholar 

  • Pluchino, A., Biondo, A., & Rapisarda, A. (2019). Exploring the role of talent and luck in getting success. Acta Physica Polonica B Proceedings Supplement, 12(1), 17–24.

    Article  Google Scholar 

  • Rangel, A. (2003). Forward and backward intergenerational goods: Why is social security good for the environment? American Economic Review, 93(3), 813–834.

    Article  Google Scholar 

  • Samuelson, P. (1958). An exact consumption-loan model of interest with or without the social contrivance of money. Journal of Political Economy, 66(6), 467–482.

    Article  Google Scholar 

  • Shea, J. (2000). Does parents’ money matter? Journal of Public Economics, 77(2), 155–184.

    Article  Google Scholar 

  • Shiller, R. J. (1999). Social security and institutions for intergenerational, intragenerational, and international risk-sharing. Carnegie-Rochester Conference Series on Public Policy, 50, 165–204.

    Article  Google Scholar 

  • Shiller, R. J. (2003). Social security and individual accounts as elements of overall risk-sharing. American Economic Review, 93(2), 343–347.

    Article  Google Scholar 

  • Sinn, H.-W. (2004). The pay-as-you-go pension system as a fertility insurance and enforcement device. Journal of Public Economics, 88(7–8), 1335–1357.

    Article  Google Scholar 

  • Storesletten, K., Telmer, C. I., & Yaron, A. (1999). The risk-sharing implications of alternative social security arrangements. Carnegie-Rochester Conference Series on Public Policy., 50, 213–259.

    Article  Google Scholar 

  • Townsend, R. (1994). Risk and insurance in village India. Econometrica, 62(3), 539–591.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referee for valuable comments and suggestions. We also benefit from helpful comments of conference participants of Society for the Advancement of Economic Theory and Association of Public Economic Theory in 2019. Yu Pang gratefully acknowledges financial support provided by Macau University of Science and Technology Foundation. All errors are our own.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Pestieau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Mathematical proofs

1.1 Proof of Lemma 1

Substituting (7) into (6) yields

$$\begin{aligned} U_{it}=u[(1-\delta )(1+\varepsilon _i)H(e_{t-1})-s_{it}-e_t)]+v[(1+r)s_{it}-f_t], \end{aligned}$$
(27)

where \(f_t\) is independent of \(s_{it}\) by (8). The maximization problem of an i-type member implies

$$\begin{aligned} u^{\prime}[(1-\delta )(1+\varepsilon _i)H(e_{t-1})-s_{it}-e_t)]=(1+r)v^{\prime}[(1+r)s_{it}-f_t]. \end{aligned}$$
(28)

Suppose that \(s_{lt}\geqslant s_{ht}\). It follows directly from (28) that

$$\begin{aligned}&u^{\prime}[(1-\delta )(1+\varepsilon _h)H(e_{t-1})-s_{ht}-e_t)] \\&\quad =(1+r)v^{\prime}[(1+r)s_{ht}-f_t] \\&\quad \geqslant (1+r)v^{\prime}[(1+r)s_{lt}-f_t] \\&\quad = u^{\prime}[(1-\delta )(1+\varepsilon _l)H(e_{t-1})-s_{lt}-e_t)] \\&\quad > u^{\prime}[(1-\delta )(1+\varepsilon _h)H(e_{t-1})-s_{ht}-e_t)], \end{aligned}$$
(29)

where the first inequality results from \(v^{\prime\prime}<0\), and the second one results from \(u^{\prime\prime}<0\) and \(\varepsilon _l<\varepsilon _h\). Because (29) is a self-contradiction, the presumption \(s_{lt}\geqslant s_{ht}\) violates, which means \(s_{lt}<s_{ht}\).

1.2 Proof of Proposition 1

Expanding the first-order condition (12) obtains

$$\begin{aligned} \frac{dU^n_t}{de^n_t}& = pu^{\prime}[(1-\delta )(1+\varepsilon _h)H(e^n_{t-1}) -s^n_{ht}-e^n_{t}]\left( -\frac{ds^n_{ht}}{de^n_t}-1\right) \\&\quad+p^2v^{\prime}[(1+r)s^n_{ht}+\delta (1+\varepsilon _h)H(e^n_{t})] \\&\qquad\left[ (1+r) \frac{ds^n_{ht}}{de^n_t}+\delta (1+\varepsilon _h)H^{\prime }(e^n_{t})\right] \\&\quad+p(1-p)v^{\prime}[(1+r)s^n_{ht}+\delta (1+\varepsilon _l)H(e^n_{t})] \\&\qquad\left[ (1+r) \frac{ds^n_{ht}}{de^n_t}+\delta (1+\varepsilon _l)H^{\prime }(e^n_{t})\right] \\&\quad+(1-p)u^{\prime}[(1-\delta )(1+\varepsilon _l)H(e^n_{t-1})-s^n_{lt}-e^n_{t}] \left( -\frac{ds^n_{lt}}{de^n_t}-1\right) \\&\quad+p(1-p)v^{\prime}[(1+r)s^n_{lt}+\delta (1+\varepsilon _h)H(e^n_{t})] \\&\qquad\left[ (1+r)\frac{ds^n_{lt}}{de^n_t}+\delta (1+\varepsilon _h) H^{\prime }(e^n_{t})\right] \\&\quad+(1-p)^2v^{\prime}[(1+r)s^n_{lt}+\delta (1+\varepsilon _l)H(e^n_{t})] \\&\qquad\left[ (1+r)\frac{ds^n_{lt}}{de^n_t}+\delta (1+\varepsilon _l) H^{\prime }(e^n_{t})\right] =0 \\\Leftrightarrow & {} p^2v^{\prime}[(1+r)s^n_{ht}+\delta (1+\varepsilon _h) H(e^n_{t})]\left[ \delta (1+\varepsilon _h)H^{\prime }(e^n_{t})-(1+r)\right] \\&\quad+p(1-p)v^{\prime}[(1+r)s^n_{ht}+\delta (1+\varepsilon _l)H(e^n_{t})] \\&\qquad\left[ \delta (1+\varepsilon _l)H^{\prime }(e^n_{t})-(1+r)\right] \\&\quad+p(1-p)v^{\prime}[(1+r)s^n_{lt}+\delta (1+\varepsilon _h)H(e^n_{t})] \\&\qquad\left[ \delta (1+\varepsilon _h)H^{\prime }(e^n_{t})-(1+r)\right] \\&\quad+(1-p)^2v^{\prime}[(1+r)s^n_{lt}+\delta (1+\varepsilon _l)H(e^n_{t})] \\&\qquad\left[ \delta (1+\varepsilon _l)H^{\prime }(e^n_{t})-(1+r)\right] =0 \\\Leftrightarrow & {} \Phi _t p\left[ (1+\varepsilon _h)H^{\prime }(e^n_{t}) -\frac{1+r}{\delta }\right] \\&\quad+\Omega _t(1-p)\left[ (1+\varepsilon _l) H^{\prime }(e^n_{t})-\frac{1+r}{\delta }\right] =0, \end{aligned}$$
(30)

where two notations are introduced:

$$\begin{aligned} \Phi _t&:=pv^{\prime}[(1+r)s^n_{ht}+\delta (1+\varepsilon _h)H(e^n_{t})] \\&\quad +(1-p)v^{\prime} [(1+r)s^n_{lt}+\delta (1+\varepsilon _h)H(e^n_{t})]>0, \end{aligned}$$
(31)
$$\begin{aligned} \Omega _t&:=pv^{\prime}[(1+r)s^n_{ht}+\delta (1+\varepsilon _l)H(e^n_{t})] \\&\quad +(1-p)v^{\prime} [(1+r)s^n_{lt}+\delta (1+\varepsilon _l)H(e^n_{t})]>0. \end{aligned}$$
(32)

By \(\varepsilon _h>\varepsilon _l\) and \(H^{\prime }>0\), we can infer from (30)–(32) that

$$\begin{aligned} \frac{1+r}{\delta (1+\varepsilon _h)}<H^{\prime }(e^n_t)<\frac{1+r}{\delta (1+\varepsilon _l)}. \end{aligned}$$
(33)

Since (10) presents \(s^n_{it}\) as a function of \((e^n_{t-1}, e^n_t)\), (30) implies that \(e^n_t\) is time-varying for some t. Because \(v^{\prime\prime}<0\) and \(\varepsilon _h>\varepsilon _l\), we have \(\Phi _t<\Omega _t\). Rewrite (30) and then use (4) to obtain

$$\begin{aligned}&[\Phi _tp(1+\varepsilon _h)+\Omega _t(1-p)(1+\varepsilon _l)]H^{\prime }(e^n_t) =\frac{1+r}{\delta }[\Phi _tp+\Omega _t(1-p)] \\&\quad \Leftrightarrow \frac{1+r}{\delta H^{\prime }(e_t)}-1= \frac{\Phi _tp\varepsilon _h+\Omega _t(1-p)\varepsilon _l}{\Phi _tp+\Omega _t(1-p)}<\frac{\Omega _t[p\varepsilon _h+(1-p) \varepsilon _l]}{\Phi _tp+\Omega _t(1-p)}=0 \\&\quad \Leftrightarrow H^{\prime }(e^n_t)>\frac{1+r}{\delta }. \end{aligned}$$
(34)

Combining (33) and (34) derives Eq. (13).

1.3 Proof of Proposition 2

Taking the first-order condition of (16) with respect to \(e^k_t\) and then inserting (15) obtains

$$\begin{aligned} \frac{dU^k_t}{de^k_t}& = p\bigg \{-u^{\prime}[(1-\delta )(1+\varepsilon _h)H(e^k_{t-1})-s^k_{ht}-e^k_t]\bigg (1+\frac{\partial s^k_{ht}}{\partial e^k_t}\bigg ) \\&\quad +v^{\prime}[(1+r)s^k_{ht}+\delta H(e^k_t)]\bigg [(1+r)\frac{\partial s^k_{ht}}{\partial e^k_t}+\delta H^{\prime }(e^k_t)\bigg ]\bigg \} +(1-p) \\&\qquad\bigg \{-u^{\prime}[(1-\delta )(1+\varepsilon _l)H(e^k_{t-1})-s^k_{lt}-e^k_t]\bigg (1+\frac{\partial s^k_{lt}}{\partial e^k_t}\bigg ) \\&\quad +v^{\prime}\big [(1+r)s^k_{lt}+\delta H(e^k_t)\big ]\bigg [(1+r)\frac{\partial s^k_{lt}}{\partial e^k_t}+\delta H^{\prime }(e^k_t)\bigg ]\bigg \}=0 \\\Leftrightarrow & {} pu^{\prime}[(1-\delta )(1+\varepsilon _h)H(e^k_{t-1})-s^k_{ht}-e^k_t] \\&\quad+(1-p)u^{\prime}[(1-\delta )(1+\varepsilon _l)H(e^k_{t-1})-s^k_{lt}-e^k_t] \\&\qquad\left\{ pv^{\prime}[(1+r)s^k_{ht}+\delta H(e^k_t)]+(1-p)v^{\prime}[(1+r)s^k_{lt} +\delta H(e^k_t)]\right\} \\&\qquad\delta H^{\prime }(e^k_t)=0 \\\Leftrightarrow & {} \left[ H^{\prime }(e^k_t)-\frac{1+r}{\delta }\right] \\&\qquad\bigg \{\frac{p v^{\prime}[(1+r)s^k_{ht}+\delta H(e^k_t)]}{1-p}+v^{\prime}[(1+r)s^k_{lt}+\delta H(e^k_t)]\bigg \}=0. \end{aligned}$$
(35)

Since \(p\in (0,1)\) and \(v^{\prime}>0\), it is straightforward to infer from (35) that (17) holds.

1.4 Proof of Proposition 3

The coefficient of variation of \(f_t\), as denoted by \(\varphi (f_t)\), equals the standard deviation of \(f_t\) to the mean of \(f_t\), namely,

$$\begin{aligned} \varphi (f_t):=\frac{SD(f_t)}{E(f_t)}=\frac{\sqrt{E(f_t^2)-[E(f_t)]^2}}{E(f_t)}, \end{aligned}$$
(36)

Without social security, we can use (4) and (8) to rewrite (36) as

$$\begin{aligned} \varphi (f^n_t)=\frac{\sqrt{[\delta H(e_t)]^2[p\varepsilon _h^2+(1-p)\varepsilon _l^2]}}{\delta H(e_t)}=\sqrt{\frac{\varepsilon _l\varepsilon _h^2}{\varepsilon _l-\varepsilon _h}-\frac{\varepsilon _l^2\varepsilon _h}{\varepsilon _l-\varepsilon _h}}=\sqrt{-\varepsilon _l\varepsilon _h}. \end{aligned}$$
(37)

With social security, we can use (8) to rewrite (36) as

$$\begin{aligned} \varphi (f^k_t)=\frac{\sqrt{[\delta H(e_t)]^2-[\delta H(e_t)]^2}}{\delta H(e_t)}=0. \end{aligned}$$
(38)

1.5 Proof of Proposition 4

Propositions 1 and 2 imply that \(H^{\prime }(e^n)>H^{\prime }(e^k)\). Therefore, \(e^n<e^k\) under the assumption of \(H^{\prime \prime }<0\).

1.6 Proof of Proposition 5

We can infer from (17) and (19) that \(H^{\prime }(e^*)<H^{\prime }(e^k)\) for \(\delta \in (0,1)\). By the assumption \(H^{\prime \prime }<0\) and Proposition 4, we have \(e^*>e^k_t>e^n_t\).

1.7 Proof of Proposition 6

Given that \(v^{\prime\prime}<0\), for any \(w_{it}\), \(s_{it}\), and \(e_t\) where \(i\in \{h,l\}\), we can infer from Eq. (11):

$$\begin{aligned} U^n(e_t)& = p\big \{u[(1-\delta )w_{ht}-s_{ht}-e_t]+Ev[(1+r)s_{ht}+\delta (1+\varepsilon )H(e_t)]\big \} \\&\quad+(1-p)\big \{u[(1-\delta )w_{lt}-s_{lt}-e_t]+Ev[(1+r)s_{lt}+\delta (1+\varepsilon )H(e_t)]\big \} \\< & {} p\big \{u[(1-\delta )w_{ht}-s_{ht}-e_t]+v[(1+r)s_{ht}+\delta E(1+\varepsilon )H(e_t)]\big \} \\&\quad+(1-p)\big \{u[(1-\delta )w_{lt}-s_{lt}-e_t]+v[(1+r)s_{lt}+\delta E(1+\varepsilon )H(e_t)]\big \} \\& = p\big \{u[(1-\delta )w_{ht}-s_{ht}-e_t]+v[(1+r)s_{ht}+\delta H(e_t)]\big \} \\&\quad+(1-p)\big \{u[(1-\delta )w_{lt}-s_{lt}-e_t]+v[(1+r)s_{lt}+\delta H(e_t)]\big \}=U^k(e_t). \end{aligned}$$
(39)

It follows that for any \(e^n_t\), \(\max \{U^k_t\}\geqslant U^k(e^{n}_t)>U^{n}(e^{n}_t)=\max \{U^{n}_t\}.\)

1.8 Proof of Proposition 7

We first examine the steady-state Gini coefficient without social security. By (21), the total income of each generation amounts to \(H(e^n)\). Referring to Figure 1(a), we obtain \(\lambda _1\) and \(\lambda _3\) as follows:

$$\begin{aligned} \lambda _1& = \frac{(1-p)^2[(1+\varepsilon _l)H(e^n)]}{H(e^n)}= (1-p)^2(1+\varepsilon _l), \end{aligned}$$
(40)
$$\begin{aligned} \lambda _3& = \lambda _1+\frac{p(1-p)[1+(1-\delta ) \varepsilon _l+\delta \varepsilon _h]H(e^n)+p(1-p) [1+(1-\delta )\varepsilon _h+\delta \varepsilon _l]H(e^n)}{H(e^n)} \\& = (1-p)[1+(1+\varepsilon _l)p]. \end{aligned}$$
(41)

However, the expression of \(\lambda _2\) depends on the income ranking. In case that \(\delta <\frac{1}{2}\), the ranking is \(I_{ll}<I_{lh}<I_{hl}<I_{hh}\). It follows that

$$\begin{aligned} \lambda _2=\lambda _1+\frac{p(1-p)[1+(1-\delta )\varepsilon _l+\delta \varepsilon _h]H(e^n)}{H(e^n)} =(1-p)[1+(1-\delta )\varepsilon _l]. \end{aligned}$$
(42)

In case that \(\delta \geqslant \frac{1}{2}\), the income ranking is \(I_{ll}<I_{hl}\leqslant I_{lh}<I_{hh}\). It follows that

$$\begin{aligned} \lambda _2=\lambda _1+\frac{(1-p)p[1+(1-\delta )\varepsilon _h+\delta \varepsilon _l]H(e^n)}{H(e^n)} =(1-p)(1+\delta \varepsilon _l). \end{aligned}$$
(43)

Plugging (40)–(43) into (22) and rearranging obtains \(G^n\) as

$$\begin{aligned} G^n=\left\{ \begin{array}{ll} (1-p)[2p(1-p)\delta \varepsilon _l-\varepsilon _l]&{}\hbox { if}\ \delta <\frac{1}{2}\\ (1-p)[2p(1-p)(1-\delta )\varepsilon _l-\varepsilon _l]&{}\text {otherwise} \end{array} \right. , \end{aligned}$$
(44)

We then examine the Gini coefficient with social security. The share of total income earned by all l-type members can be expressed by

$$\begin{aligned} \lambda _4=\frac{(1-p)(1+\varepsilon _l)H(e^k)}{(1-p)(1+\varepsilon _l)H(e^k)+p(1+\varepsilon _h)H(e^k)} =(1-p)(1+\varepsilon _l). \end{aligned}$$
(45)

Inserting (45) into (23) yields \(G^k=-(1-p)\varepsilon _l\). By this equation and (44), we show that

$$\begin{aligned} G^n-G^k=\left\{ \begin{array}{ll} 2p(1-p)^2\delta \varepsilon _l<0&{}\hbox { if}\ \delta<\frac{1}{2}\\ 2p(1-p)^2(1-\delta )\varepsilon _l<0&{}\text {otherwise} \end{array} \right. . \end{aligned}$$
(46)

1.9 Proof of Proposition 8

Given the specific functions in (24), the optimal educational spending per child can be written as

$$\begin{aligned} e^k_t=\frac{\beta \delta }{1+r}. \end{aligned}$$
(47)

Plugging (47) into (15) solves the i-type individual’s optimal (interior) saving level as

$$\begin{aligned}&\frac{1}{\beta (1-\delta )(1+\varepsilon _i)\ln e^k_{t-1}-s^k_{it}-e_{t}}=\frac{\alpha (1+r)}{(1+r)s^k_{it}+\beta \delta \ln e^k_t} \\&\quad \Leftrightarrow (1+\alpha )s^k_{it}=\alpha \left[ \beta (1-\delta )(1+\varepsilon _i)\ln \frac{\beta \delta }{1+r}-\frac{\beta \delta }{1+r}\right] -\frac{\beta \delta }{1+r}\ln \frac{\beta \delta }{1+r}, \\&\quad \Leftrightarrow s^k_{it}=\frac{\beta }{1+\alpha }\left[ \alpha (1-\delta )(1+\varepsilon _i)-\frac{\delta }{1+r}\right] \ln \frac{\beta \delta }{1+r}-\frac{\alpha \beta \delta }{(1+\alpha )(1+r)} \end{aligned}$$
(48)

Substituting (47) and (48) into (16) derives the steady-state social welfare under the social security system as

$$\begin{aligned} U^k& = p\ln \\&\left[ \frac{\beta (1-\delta )(1+\varepsilon _h)}{1+\alpha }\ln \frac{\beta \delta }{1+r}+\frac{\beta \delta }{(1+\alpha )(1+r)}\ln \frac{\beta \delta }{1+r}-\frac{\beta \delta }{(1+\alpha )(1+r)}\right] \\&\quad+\alpha p\ln \left[ \frac{\alpha \beta (1+\delta )(1+\varepsilon _h)(1+r)}{1+\alpha }\ln \frac{\beta \delta }{1+r}+\frac{\alpha \beta \delta }{1+\alpha }\ln \frac{\beta \delta }{1+r}-\frac{\alpha \beta \delta }{1+r}\right] \\&\quad+(1-p)\ln \left[ \frac{\beta (1-\delta )(1+\varepsilon _l)}{1+\alpha }\ln \frac{\beta \delta }{1+r}+\frac{\beta \delta }{(1+\alpha )(1+r)}\ln \frac{\beta \delta }{1+r}-\frac{\beta \delta }{(1+\alpha )(1+r)}\right] \\&\quad+\alpha (1-p)\ln \left[ \frac{\alpha \beta (1+\delta )(1+\varepsilon _l)(1+r)}{1+\alpha }\ln \frac{\beta \delta }{1+r}+\frac{\alpha \beta \delta }{1+\alpha }\ln \frac{\beta \delta }{1+r}-\frac{\alpha \beta \delta }{1+r}\right] \\& = \ln \bigg [\frac{\alpha ^\alpha }{1+r}\left( \frac{\beta }{1+\alpha }\right) ^{1+\alpha } \bigg ] \\&\quad+p(1+\alpha )\ln \left\{ [(1+r)(1+\varepsilon _h)(1-\delta )+\delta ]\ln \frac{\beta \delta }{1+r}-\delta \right\} \\&\quad+(1-p)(1+\alpha )\ln \left\{ [(1+r)(1+\varepsilon _l)(1-\delta )+\delta ]\ln \frac{\beta \delta }{1+r}-\delta \right\} . \end{aligned}$$
(49)

Differentiating (49) with respect to \(\delta\) and setting it to zero yields the interior solution to \(\delta\):

$$\begin{aligned} \frac{\partial U^k_t}{\partial \delta }& = p(1+\alpha ) \left\{ \frac{-(r+\varepsilon _h+r\varepsilon _h)\ln \frac{\beta \delta }{1+r}+[(1+r)(1+\varepsilon _h)(1-\delta )+\delta ]/\delta -1}{[(1+r)(1+\varepsilon _h)(1-\delta )+\delta ]\ln \frac{\beta \delta }{1+r}-\delta }\right\} \\&\quad +(1-p)(1+\alpha ) \left\{ \frac{-(r+\varepsilon _l+r\varepsilon _l)\ln \frac{\beta \delta }{1+r}+[(1+r)(1+\varepsilon _l)(1-\delta )+\delta ]/\delta -1}{[(1+r)(1+\varepsilon _l)(1-\delta )+\delta ]\ln \frac{\beta \delta }{1+r}-\delta }\right\} =0\\\Leftrightarrow & {} \frac{1-p}{p}\left\{ \frac{(1+r+\varepsilon _l+r\varepsilon _l)(1-\delta )-\delta (r+\varepsilon _l+r\varepsilon _l)\ln \frac{\beta \delta }{1+r}}{[(1+r+\varepsilon _l+r\varepsilon _l)(1-\delta )+\delta ]\ln \frac{\beta \delta }{1+r}-\delta }\right\} \\&\quad+ \frac{(1+r+\varepsilon _h+r\varepsilon _h)(1-\delta )-\delta (r+\varepsilon _h+r\varepsilon _h)\ln \frac{\beta \delta }{1+r}}{[(1+r+\varepsilon _h+r\varepsilon _h)(1-\delta )+\delta ]\ln \frac{\beta \delta }{1+r}-\delta }=0\\\Leftrightarrow & {} \frac{\varepsilon _h}{\varepsilon _l} \frac{(r+\varepsilon _l+r\varepsilon _l)\left( 1-\delta - \delta \ln \frac{\beta \delta }{1+r}\right) +1-\delta }{[1+(r+\varepsilon _l+r\varepsilon _l)(1-\delta )] \ln \frac{\beta \delta }{1+r}-\delta } \\& = \frac{(r+\varepsilon _h+r\varepsilon _h)\left( 1-\delta -\delta \ln \frac{\beta \delta }{1+r}\right) +1-\delta }{[1+(r+\varepsilon _h+r\varepsilon _h)(1-\delta )]\ln \frac{\beta \delta }{1+r}-\delta }, \end{aligned}$$

which is equivalent to Eq. (25).

1.10 Proof of Proposition 9

It is clear from (25) that \({\widetilde{\delta }}^k\) is not a function of \(\alpha\). Besides, totally differentiating (25) with respect to \(\delta\) and \(\beta\) obtains:

$$\begin{aligned}&\frac{\left\{ (r+\varepsilon _h+r\varepsilon _h)\left[ -d\delta -\ln \frac{\beta \delta }{1+r}d\delta -\delta \left( \frac{d\beta }{\beta }+\frac{d\delta }{\delta }\right) \right] -d\delta \right\} \left[ (r+\varepsilon _l+r\varepsilon _l)\left( 1-\delta -\delta \ln \frac{\beta \delta }{1+r}\right) +1-\delta \right] }{\left[ (r+\varepsilon _l+r\varepsilon _l)\left( 1-\delta -\delta \ln \frac{\beta \delta }{1+r}\right) +1-\delta \right] ^2} \\&\qquad -\frac{\left\{ (r+\varepsilon _l+r\varepsilon _l)\left[ -d\delta -\ln \frac{\beta \delta }{1+r}d\delta -\delta \left( \frac{d\beta }{\beta }+\frac{d\delta }{\delta }\right) \right] -d\delta \right\} \left[ (r+\varepsilon _h+r\varepsilon _h)\left( 1-\delta -\delta \ln \frac{\beta \delta }{1+r}\right) +1-\delta \right] }{\left[ (r+\varepsilon _l+r\varepsilon _l)\left( 1-\delta -\delta \ln \frac{\beta \delta }{1+r}\right) +1-\delta \right] ^2} \\&\quad =\frac{\left\{ -(r+\varepsilon _h+r\varepsilon _h)\ln \frac{\beta \delta }{1+r}d\delta +[1+(r+\varepsilon _l+r\varepsilon _l)(1-\delta )]\left( \frac{d\beta }{\beta }+\frac{d\delta }{\delta }\right) -d\delta \right\} \left\{ [1+(r+\varepsilon _l+r\varepsilon _l)(1-\delta )]\ln \frac{\beta \delta }{1+r}-\delta \right\} }{\frac{\varepsilon _l}{\varepsilon _h}\left\{ [1+(r+\varepsilon _l+r\varepsilon _l)(1-\delta )]\ln \frac{\beta \delta }{1+r}-\delta \right\} ^2}\\&\qquad -\frac{\left\{ -(r+\varepsilon _l+r\varepsilon _l)\ln \frac{\beta \delta }{1+r}d\delta +[1+(r+\varepsilon _h+r\varepsilon _h)(1-\delta )]\left( \frac{d\beta }{\beta }+\frac{d\delta }{\delta }\right) -d\delta \right\} \left\{ [1+(r+\varepsilon _h+r\varepsilon _h)(1-\delta )]\ln \frac{\beta \delta }{1+r}-\delta \right\} }{\frac{\varepsilon _l}{\varepsilon _h}\left\{ [1+(r+\varepsilon _l+r\varepsilon _l)(1-\delta )]\ln \frac{\beta \delta }{1+r}-\delta \right\} ^2}\\&\quad \Leftrightarrow \frac{(\varepsilon _h+r\varepsilon _h-\varepsilon _l-r\varepsilon _l)(1-\delta )\left( -2d\delta -\ln \frac{\beta \delta }{1+r}d\delta -\frac{\delta }{\beta }d\beta \right) +(\varepsilon _h+r\varepsilon _h-\varepsilon _l-r\varepsilon _l)\left( 1-\delta -\delta \ln \frac{\beta \delta }{1+r}\right) d\delta }{\left[ (r+\varepsilon _l+r\varepsilon _l)\left( 1-\delta -\delta \ln \frac{\beta \delta }{1+r}\right) +1-\delta \right] ^2} \\&\quad =\frac{(\varepsilon _h+r\varepsilon _h-\varepsilon _l-r\varepsilon _l)\left\{ \left[ (1-\delta )\frac{d\beta }{\beta }+(1-\delta )\frac{d\delta }{\delta }-\ln \frac{\beta \delta }{1+r}d\delta \right] \left( \ln \frac{\beta \delta }{1+r}-\delta \right) +(1-\delta )\ln \frac{\beta \delta }{1+r}\left( d\delta -\frac{d\beta }{\beta }-\frac{d\delta }{\delta }\right) \right\} }{\frac{\varepsilon _l}{\varepsilon _h}\left\{ [1+(r+\varepsilon _l+r\varepsilon _l)(1-\delta )]\ln \frac{\beta \delta }{1+r}-\delta \right\} ^2} \\&\quad \Leftrightarrow \frac{\frac{\delta }{\beta }d\beta +\left( 1+\frac{1}{1-\delta } \ln \frac{\beta \delta }{1+r}\right) d\delta }{\left[ (r+\varepsilon _l+r\varepsilon _l) \left( 1-\delta -\delta \ln \frac{\beta \delta }{1+r}\right) +1-\delta \right] ^2} \\&\quad =\frac{\frac{\delta }{\beta }d\beta +\left( 1+\frac{1}{1-\delta } \ln \frac{\beta \delta }{1+r}\right) d\delta +\frac{1}{1-\delta } \left( \ln \frac{\beta \delta }{1+r}\right) ^2d\delta -\frac{2}{1-\delta } \ln \frac{\beta \delta }{1+r}d\delta }{\frac{\varepsilon _l}{\varepsilon _h} \left\{ [1+(r+\varepsilon _l+r\varepsilon _l)(1-\delta )]\ln \frac{\beta \delta }{1+r} -\delta \right\} ^2} \\&\quad \Leftrightarrow \frac{\varepsilon _l}{\varepsilon _h} \left\{ \frac{[1+(r+\varepsilon _l+r\varepsilon _l)(1-\delta )] \ln \frac{\beta \delta }{1+r}-\delta }{(r+\varepsilon _l+r\varepsilon _l) \left( 1-\delta -\delta \ln \frac{\beta \delta }{1+r}\right) +1-\delta }\right\} ^2-1 \\&\quad =\frac{\frac{1}{1-\delta }\ln \frac{\beta \delta }{1+r}\left( \ln \frac{\beta \delta }{1+r}-2\right) }{\left( 1+\frac{1}{1-\delta }\ln \frac{\beta \delta }{1+r}\right) +\frac{\delta }{\beta }\frac{d\beta }{d\delta }} \\&\quad \Leftrightarrow \frac{d\beta }{d\delta }=\frac{\beta }{\delta }\left\{ \frac{\frac{1}{1-\delta }\ln \frac{\beta \delta }{1+r}\left( \ln \frac{\beta \delta }{1+r}-2\right) }{\frac{\varepsilon _l}{\varepsilon _h}\left\{ \frac{[1+(r+\varepsilon _l+r\varepsilon _l)(1-\delta )]\ln \frac{\beta \delta }{1+r}-\delta }{(r+\varepsilon _l+r\varepsilon _l)\left( 1-\delta -\delta \ln \frac{\beta \delta }{1+r}\right) +1-\delta }\right\} ^2-1}-\left( 1+\frac{1}{1-\delta }\ln \frac{\beta \delta }{1+r}\right) \right\} , \end{aligned}$$

where the first term in the bracket of the right-hand-side is negative if \(\ln \frac{\beta \delta }{1+r}-2>0\), while the second term is positive. Therefore, \(\frac{d\delta }{d\beta }<0\) if \(\ln \frac{\beta \delta }{1+r}>2\).

Appendix 2: A numerical example of Sect. 3.1

This appendix provides a simulation on the evolution of public educational expenditure, private savings, and social welfare without social security. Our numerical exercise rests on specific functional forms in (24). We first rewrite the i-type individual’s maximization problem (10) as a quadratic function of \(s^n_{it}\):

$$\begin{aligned}&\frac{\alpha (1+r) p}{(1+r)s^n_{it}+\beta \delta (1+\varepsilon _h)\ln (e^n_t)}+\frac{\alpha (1+r)(1-p)}{(1+r)s^n_{it}+\beta \delta (1+\varepsilon _l)\ln (e^n_t)} \\&\quad =\frac{1}{\beta (1-\delta )(1+\varepsilon _i)\ln (e^n_{t-1})-s^n_{it}-e^n_t}, \\&\quad \Leftrightarrow \alpha \left[ s^n_{it}+\frac{\beta \delta }{1+r}(1+\varepsilon _h+\varepsilon _l)\ln (e^n_t)\right] =\frac{\left[ s^n_{it}+\frac{\beta \delta (1+\varepsilon _h)\ln (e^n_t)}{1+r}\right] \left[ s^n_{it}+\frac{\beta \delta (1+\varepsilon _l)\ln (e^n_t)}{1+r}\right] }{\beta (1-\delta )(1+\varepsilon _i)\ln (e^n_{t-1})-s^n_{it}-e^n_t} \\&\quad \Leftrightarrow (s^n_{it})^2+\left\{ \frac{\beta \delta \ln e^n_t}{1+r}\left( \varepsilon _h+\varepsilon _l+\frac{2+\alpha }{1+\alpha }\right) -\frac{\alpha [\beta (1-\delta )(1+\varepsilon _i)\ln e^n_{t-1}-e^n_t]}{1+\alpha }\right\} s^n_{it} \\&\qquad +\left( \frac{\beta \delta \ln e^n_t}{1+r}\right) ^2\frac{(1+\varepsilon _h)(1+\varepsilon _l)}{1+\alpha } \\&\qquad -\frac{\alpha \beta \delta (1+\varepsilon _h+\varepsilon _l)[\beta (1-\delta )(1+\varepsilon _i)\ln e^n_{t-1}-e^n_t]\ln e^n_t}{(1+\alpha )(1+r)}=0. \end{aligned}$$
(50)

The government’s optimal choice of \(e^n_t\) characterized by (12) can be solved in the next equation:

$$\begin{aligned}&\frac{p[(1+r)(ps^n_{lt}+(1-p)s^n_{ht})+\beta \delta (1+\varepsilon _h)\ln e^n_t]\left[ (1+r)e^n_t-\beta \delta (1+\varepsilon _h)\right] }{[(1+r)s^n_{ht}+\beta \delta (1+\varepsilon _h)\ln e^n_t][(1+r)s^n_{lt}+\beta \delta (1+\varepsilon _h)\ln e^n_t]} \\&\quad =\frac{(p-1)[(1+r)(ps^n_{lt}+(1-p)s^n_{ht})+\beta \delta (1+\varepsilon _l)\ln e^n_t]\left[ (1+r)e^n_t-\beta \delta (1+\varepsilon _l)\right] }{[(1+r)s^n_{ht}+\beta \delta (1+\varepsilon _l)\ln e^n_t][(1+r)s^n_{lt}+\beta \delta (1+\varepsilon _l)\ln e^n_t]}, \end{aligned}$$
(51)

where \(p=\frac{\varepsilon _l}{\varepsilon _l-\varepsilon _h}\) by (4). Combining (50) and (51) implies that \(e^n_t\) is governed by \(e^n_{t-1}\) and six parameters, namely \((e^n_{t-1}; \alpha , \beta , r, \varepsilon _h, \varepsilon _l, \delta )\).

To do the simulation, we rely on the values of parameters as in Table 1. In addition, we set the initial level of educational spending to 9 (i.e., \(e^n_0=9\)) and the fraction of earnings transferred to parents to 0.4 (i.e., \(\delta =40\%\)). Table 2 reports the simulated results of \(e^n_t\), \(s^n_{lt}\), \(s^n_{ht}\), and \(U^n_t\) in every period t. For example, starting from 9 in the period 0, educational spending per child stands at 17.076 in period 1, increases to 17.497 in period 2, and then converges to its steady-state level of 17.511. The other three variables exhibit a similar pattern: private savings and social welfare rise gradually to their respective steady-state levels.

Table 2 Transitional dynamics and steady state under the intrafamily transfer scheme

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, S., Pang, Y. & Pestieau, P. Investment in children, social security, and intragenerational risk sharing. Int Tax Public Finance 29, 286–315 (2022). https://doi.org/10.1007/s10797-021-09664-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10797-021-09664-3

Keywords

JEL Classification

Navigation