Skip to main content
Log in

Genome-wide comparative analysis of Mg transporter gene family between Triticum turgidum and Camelina sativa

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Magnesium (Mg) as a bimetal plays critical roles in biochemical processes, membrane stability, and enzyme activity. Mg transporters (MGTs) are involving in maintaining Mg homeostasis in cells. Although the MGT family members have been identified in different plant species, there is no comprehensive analysis of the other plants' MGT genes. In the current study, 62 and 41 non-redundant putative MGT proteins were recognized into the genome of Camelina sativa, and Triticum turgidum and they were compared based on physicochemical properties, protein structure, expression, and interaction. All identified MGTs were classified into three subgroups, NIPA, CorA, and MRS2/MGT, based on conserved-motifs distribution. The results showed that the secondary structure pattern in NIPA and MRS2 subfamily members in both studied plant species were highly similar. Furthermore, MGTs encompass the conserved structures and the critical sites mainly in the metal ion and Mg2+ binding centers as well as the catalytic sites were observed. The highest numbers of protein channels were predicted in CorA proteins in both C. sativa and T. turgidum with 24 and 17 channel numbers, respectively. The Ser, Pro, Gly, Lys, Tyr, and Arg amino acids were predicted as the binding residues in MGTs channel regions. The expression pattern of identified genes demonstrated that MGT genes have diverse tissue-specific expression and stress response expression patterns. Besides, 147 co-expressed genes with MGTs were clustered into the eight co-expression nodes involved in N-glycan biosynthesis, protein processing in the endoplasmic reticulum, carbon metabolism, biosynthesis of amino acids, and endocytosis. In the present study, all interpretations are based on in silico predictions, which can be used in further studies related to functional genomics of MGT genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmadizadeh M, Chen J-T, Hasanzadeh S et al (2020a) Insights into the genes involved in the ethylene biosynthesis pathway in Arabidopsis thaliana and Oryza sativa. J Genet Eng Biotechnol 18:1–20

    Article  Google Scholar 

  • Ahmadizadeh M, Rezaee S, Heidari P (2020b) Genome-wide characterization and expression analysis of fatty acid desaturase gene family in Camelina sativa. Gene Rep 21:100894

    Article  Google Scholar 

  • Bailey TL, Boden M, Buske FA et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binns D, Dimmer E, Huntley R et al (2009) QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics 25:3045–3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolser DM, Staines DM, Perry E, Kersey PJ (2017) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomic data. In: Plant Genomics Databases. Springer, New York, pp 1–31

  • Braun P, Aubourg S, Van Leene J et al (2013) Plant protein interactomes. Annu Rev Plant Biol 64:161–187

    Article  CAS  PubMed  Google Scholar 

  • Bui DM, Gregan J, Jarosch E et al (1999) The bacterial magnesium transporter CorA can functionally substitute for its putative homologue Mrs2p in the yeast inner mitochondrial membrane. J Biol Chem 274:20438–20443

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant 133:692–704

    Article  CAS  PubMed  Google Scholar 

  • Ceylan Y, Kutman UB, Mengutay M, Cakmak I (2016) Magnesium applications to growth medium and foliage affect the starch distribution, increase the grain size and improve the seed germination in wheat. Plant Soil 406:145–156

    Article  CAS  Google Scholar 

  • Chen C, Chen H, Zhang Y, et al (2020) TBtools-an integrative toolkit developed for interactive analyses of big biological data. bioRxiv 289660

  • Chen J, Li L, Liu Z et al (2009) Magnesium transporter AtMGT9 is essential for pollen development in Arabidopsis. Cell Res 19:887–898

    Article  PubMed  CAS  Google Scholar 

  • Chen ZC, Peng WT, Li J, Liao H (2018) Functional dissection and transport mechanism of magnesium in plants. In: Seminars in cell & developmental biology. Elsevier, Amsterdam, pp 142–152

  • Chen ZC, Yamaji N, Horie T et al (2017) A magnesium transporter OsMGT1 plays a critical role in salt tolerance in rice. Plant Physiol 174:1837–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZC, Yamaji N, Motoyama R et al (2012) Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice. Plant Physiol 159:1624–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conn S, Gilliham M (2010) Comparative physiology of elemental distributions in plants. Ann Bot 105:1081–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Luz G-N, Gillmor CS, Jiménez LF et al (2004) CHLOROPLAST BIOGENESIS genes act cell and noncell autonomously in early chloroplast development. Plant Physiol 135:471–482

    Article  Google Scholar 

  • DeLano WL (2002) Pymol: an open-source molecular graphics tool. CCP4 Newsl protein Crystallogr 40:82–92

  • Deng W, Luo K, Li D et al (2006) Overexpression of an Arabidopsis magnesium transport gene, AtMGT1, in Nicotiana benthamiana confers Al tolerance. J Exp Bot 57:4235–4243

    Article  CAS  PubMed  Google Scholar 

  • Drummond RSM, Tutone A, Li Y-C, Gardner RC (2006) A putative magnesium transporter AtMRS2-11 is localized to the plant chloroplast envelope membrane system. Plant Sci 170:78–89

    Article  CAS  Google Scholar 

  • Faraji S, Filiz E, Kazemitabar SK et al (2020) The AP2/ERF gene family in Triticum durum: genome-wide identification and expression analysis under drought and salinity stresses. Genes (Basel) 11:1464

    Article  CAS  Google Scholar 

  • Finn RD, Mistry J, Tate J et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  CAS  PubMed  Google Scholar 

  • Franck CM, Westermann J, Bürssner S et al (2018) The protein phosphatases ATUNIS1 and ATUNIS2 regulate cell wall integrity in tip-growing cells. Plant Cell 30:1906–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franz M, Lopes CT, Huck G et al (2016) Cytoscape. js: a graph theory library for visualisation and analysis. Bioinformatics 32:309–311

    CAS  PubMed  Google Scholar 

  • Fukao Y (2012) Protein-protein interactions in plants. Plant Cell Physiol 53:617–625. https://doi.org/10.1093/pcp/pcs026

    Article  CAS  PubMed  Google Scholar 

  • Furuya T, Matsuoka D, Nanmori T (2013) Phosphorylation of Arabidopsis thaliana MEKK1 via Ca 2+ signaling as a part of the cold stress response. J Plant Res 126:833–840

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook. Humana Press, Totowa, NJ, pp 571–607

    Chapter  Google Scholar 

  • Gebert M, Meschenmoser K, Svidová S et al (2009) A root-expressed magnesium transporter of the MRS2/MGT gene family in Arabidopsis thaliana allows for growth in low-Mg2+ environments. Plant Cell 21:4018–4030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 11:681–684

    Article  CAS  Google Scholar 

  • Gil MJ, Coego A, Mauch-Mani B et al (2005) The Arabidopsis csb3 mutant reveals a regulatory link between salicylic acid-mediated disease resistance and the methyl-erythritol 4-phosphate pathway. Plant J 44:155–166

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Nazim H, Liang Z, Yang D (2016) Magnesium deficiency in plants: An urgent problem. Crop J 4:83–91

    Article  Google Scholar 

  • Guo Z, Wang X-B, Wang Y et al (2018) Identification of a new host factor required for antiviral RNAi and amplification of viral siRNAs. Plant Physiol 176:1587–1597

    Article  CAS  PubMed  Google Scholar 

  • Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506

    Article  CAS  PubMed  Google Scholar 

  • Heidari P (2019) Comparative analysis of C-repeat binding factors (CBFs) in tomato and arabidopsis. Braz Arch Biol Technol 62:1–9. https://doi.org/10.1590/1678-4324-2019180715

    Article  CAS  Google Scholar 

  • Heidari P, Ahmadizadeh M, Izanlo F, Nussbaumer T (2019) In silico study of the CESA and CSL gene family in Arabidopsis thaliana and Oryza sativa: focus on post-translation modifications. Plant Gene 19:100189. https://doi.org/10.1016/j.plgene.2019.100189

    Article  CAS  Google Scholar 

  • Heidari P, Ahmadizadeh M, Najafi-Zarrini H (2015) In Silico analysis of Cis-regulatory elements on co-expressed genes. J Biol Environ Sci 9:1–9

    Google Scholar 

  • Heidari P, Mazloomi F, Nussbaumer T, Barcaccia G (2020) Insights into the SAM synthetase gene family and its roles in tomato seedlings under abiotic stresses and hormone treatments. Plants 9:586. https://doi.org/10.3390/plants9050586

    Article  CAS  PubMed Central  Google Scholar 

  • Heo JB, Sung S, Assmann SM (2012) Ca2+-dependent GTPase, extra-large G protein 2 (XLG2), promotes activation of DNA-binding protein related to vernalization 1 (RTV1), leading to activation of floral integrator genes and early flowering in Arabidopsis. J Biol Chem 287:8242–8253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermans C, Bourgis F, Faucher M et al (2005) Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves. Planta 220:541–549

    Article  CAS  PubMed  Google Scholar 

  • Hermans C, Conn SJ, Chen J et al (2013) An update on magnesium homeostasis mechanisms in plants. Metallomics 5:1170–1183

    Article  CAS  PubMed  Google Scholar 

  • Hmiel SP, Snavely MD, Miller CG, Maguire ME (1986) Magnesium transport in Salmonella typhimurium: characterization of magnesium influx and cloning of a transport gene. J Bacteriol 168:1444–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horie T, Brodsky DE, Costa A et al (2011) K+ transport by the OsHKT2; 4 transporter from rice with atypical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions. Plant Physiol 156:1493–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsia MM, Callis J (2010) BRIZ1 and BRIZ2 proteins form a heteromeric E3 ligase complex required for seed germination and post-germination growth in Arabidopsis thaliana. J Biol Chem 285:37070–37081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jendele L, Krivak R, Skoda P et al (2019) PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Res 47:W345–W349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang F, Yi L, Moore M et al (2002) Chloroplast YidC homolog Albino3 can functionally complement the bacterial YidC depletion strain and promote membrane insertion of both bacterial and chloroplast thylakoid proteins. J Biol Chem 277:19281–19288

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015a) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J-K, Cho Y, Lee M et al (2015b) BetaCavityWeb: a webserver for molecular voids and channels. Nucleic Acids Res 43:W413–W418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi NI, Tanoi K (2015) Critical issues in the study of magnesium transport systems and magnesium deficiency symptoms in plants. Int J Mol Sci 16:23076–23093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz H, Dombinov V, Dreistein J et al (2013) Magnesium deficiency phenotypes upon multiple knockout of Arabidopsis thaliana MRS2 clade B genes can be ameliorated by concomitantly reduced calcium supply. Plant cell Physiol 54:1118–1131

    Article  CAS  PubMed  Google Scholar 

  • Li H, Du H, Huang K et al (2016) Identification, and functional and expression analyses of the CorA/MRS2/MGT-type magnesium transporter family in maize. Plant Cell Physiol 57:1153–1168

    Article  CAS  PubMed  Google Scholar 

  • Li H, Liu C, Zhou L et al (2018) Molecular and functional characterization of the magnesium transporter gene ZmMGT12 in maize. Gene 665:167–173

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wang N, Ding J et al (2017) The maize CorA/MRS2/MGT-type mg transporter, ZmMGT10, responses to magnesium deficiency and confers low magnesium tolerance in transgenic Arabidopsis. Plant Mol Biol 95:269–278

    Article  CAS  PubMed  Google Scholar 

  • Li J, Huang Y, Tan H et al (2015) An endoplasmic reticulum magnesium transporter is essential for pollen development in Arabidopsis. Plant Sci 231:212–220

    Article  CAS  PubMed  Google Scholar 

  • Li L, Tutone AF, Drummond RSM et al (2001) A novel family of magnesium transport genes in Arabidopsis. Plant Cell 13:2761–2775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang S, Qi Y, Zhao J et al (2017) Mutations in the Arabidopsis AtMRS2-11/AtMGT10/VAR5 gene cause leaf reticulation. Front Plant Sci 8:2007

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin R, Wang H (2004) Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light control of Arabidopsis development. Plant Physiol 136:4010–4022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Guo L-X, Luo L-J et al (2019) Identification of the magnesium transport (MGT) family in Poncirus trifoliata and functional characterization of PtrMGT5 in magnesium deficiency stress. Plant Mol Biol 101:551–560

    Article  CAS  PubMed  Google Scholar 

  • Livigni S, Lucini L, Sega D et al (2019) The different tolerance to magnesium deficiency of two grapevine rootstocks relies on the ability to cope with oxidative stress. BMC Plant Biol 19:1–17

    Article  Google Scholar 

  • Lovell SC, Davis IW, Arendall WB III et al (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins Struct Funct Bioinform 50:437–450

    Article  CAS  Google Scholar 

  • Manishankar P, Wang N, Köster P et al (2018) Calcium signaling during salt stress and in the regulation of ion homeostasis. J Exp Bot 69:4215–4226

    Article  CAS  Google Scholar 

  • Mao D, Chen J, Tian L et al (2014) Arabidopsis transporter MGT6 mediates magnesium uptake and is required for growth under magnesium limitation. Plant Cell 26:2234–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic Press, New York

    Google Scholar 

  • Martínez-Atienza J, Jiang X, Garciadeblas B et al (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nodine MD, Tax FE (2008) Two receptor-like kinases required together for the establishment of Arabidopsis cotyledon primordia. Dev Biol 314:161–170

    Article  CAS  PubMed  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  PubMed  Google Scholar 

  • Obayashi T, Aoki Y, Tadaka S et al (2018) ATTED-II in 2018: a plant coexpression database based on investigation of the statistical property of the mutual rank index. Plant Cell Physiol 59:e3–e3

    Article  PubMed  CAS  Google Scholar 

  • Peng H-Y, Qi Y-P, Lee J et al (2015) Proteomic analysis of Citrus sinensis roots and leaves in response to long-term magnesium-deficiency. BMC Genomics 16:253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piskacek M, Zotova L, Zsurka G, Schweyen RJ (2009) Conditional knockdown of hMRS2 results in loss of mitochondrial Mg+ uptake and cell death. J Cell Mol Med 13:693–700

    Article  CAS  PubMed  Google Scholar 

  • Portis Jr AR, Heldt HW (1976) Light-dependent changes of the Mg2+ concentration in the stroma in relation to the Mg2+ dependency of CO2 fixation in intact chloroplasts. Biochim Biophys Acta BBA 449:434–446

  • Regon P, Chowra U, Awasthi JP et al (2019) Genome-wide analysis of magnesium transporter genes in Solanum lycopersicum. Comput Biol Chem 80:498–511

    Article  CAS  PubMed  Google Scholar 

  • Rezaee S, Ahmadizadeh M, Heidari P (2020) Genome-wide characterization, expression profiling, and post- transcriptional study of GASA gene family. Gene Rep 20:100795. https://doi.org/10.1016/j.genrep.2020.100795

    Article  Google Scholar 

  • Saito T, Kobayashi NI, Tanoi K et al (2013) Expression and functional analysis of the CorA-MRS2-ALR-type magnesium transporter family in rice. Plant Cell Physiol 54:1673–1683

    Article  CAS  PubMed  Google Scholar 

  • Schock I, Gregan J, Steinhauser S et al (2000) A member of a novel Arabidopsis thaliana gene family of candidate Mg2+ ion transporters complements a yeast mitochondrial group II intron-splicing mutant. Plant J 24:489–501

    Article  CAS  PubMed  Google Scholar 

  • Schultz J, Copley RR, Doerks T et al (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28:231–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperrazza JM, Spremulli LL (1983) Quantitation of cation binding to wheat germ ribosomes: Influences on submit association equilibria and ribosome activity. Nucleic Acids Res 11:2665–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi M, Hamano K, Takagi H et al (2019) Disruption of the MAMP-induced MEKK1-MKK1/MKK2-MPK4 pathway activates the TNL immune receptor SMN1/RPS6. Plant Cell Physiol 60:778–787

    Article  CAS  PubMed  Google Scholar 

  • Tang N, Li Y, Chen L (2012) Magnesium deficiency–induced impairment of photosynthesis in leaves of fruiting Citrus reticulata trees accompanied by up-regulation of antioxidant metabolism to avoid photo-oxidative damage. J plant Nutr soil Sci 175:784–793

    Article  CAS  Google Scholar 

  • Tian W, Chen C, Lei X et al (2018) CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 46:W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tränkner M, Jákli B, Tavakol E et al (2016) Magnesium deficiency decreases biomass water-use efficiency and increases leaf water-use efficiency and oxidative stress in barley plants. Plant Soil 406:409–423

    Article  CAS  Google Scholar 

  • Ueda T, Matsuda N, Uchimiya H, Nakano A (2000) Modes of interaction between the Arabidopsis Rab protein, Ara4, and its putative regulator molecules revealed by a yeast expression system. Plant J 21:341–349

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hua X, Xu J et al (2019) Comparative genomics revealed the gene evolution and functional divergence of magnesium transporter families in Saccharum. BMC Genomics 20:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  PubMed  PubMed Central  Google Scholar 

  • Willard L, Ranjan A, Zhang H et al (2003) VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 31:3316–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin S, Ze Y, Liu C et al (2009) Cerium relieves the inhibition of nitrogen metabolism of spinach caused by magnesium deficiency. Biol Trace Elem Res 132:247–258

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Chen Y, Lu C, Hwang J (2006) Prediction of protein subcellular localization. Proteins Struct Funct Bioinform 64:643–651

    Article  CAS  Google Scholar 

  • Zhang L, Wen A, Wu X et al (2019) Molecular identification of the magnesium transport gene family in Brassica napus. Plant Physiol Biochem 136:204–214

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Yang W, Zhao Q et al (2016) Analysis of weighted co-regulatory networks in maize provides insights into new genes and regulatory mechanisms related to inositol phosphate metabolism. BMC Genomics 17:1–17

    CAS  Google Scholar 

  • Zhao Y, Xing L, Wang X, et al (2014) The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci Signal 7:ra53–ra53

  • Zhao Z, Wang P, Jiao H et al (2018) Phylogenetic and expression analysis of the magnesium transporter family in pear, and functional verification of PbrMGT7 in pear pollen. J Hortic Sci Biotechnol 93:51–63

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parviz Heidari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1249 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraji, S., Ahmadizadeh, M. & Heidari, P. Genome-wide comparative analysis of Mg transporter gene family between Triticum turgidum and Camelina sativa. Biometals 34, 639–660 (2021). https://doi.org/10.1007/s10534-021-00301-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-021-00301-4

Keywords

Navigation