Skip to main content

Advertisement

Log in

Cap and Trade Versus Carbon Tax: An Analysis Based on a CGE Model

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

Cost-effectiveness comparisons between two typical pricing policies, i.e., cap and trade and carbon tax, are rare in the literature and are tackled in this study. We define various carbon shadow prices at different administrative levels. By using a computable general equilibrium model, the cost-effectiveness of various policies is compared in terms of the estimation of carbon shadow prices. The results show that an energy cap-and-trade policy yields a close GDP-based carbon shadow price but a lower GSPV-based (gross-social-production-value-based) carbon shadow price than a proportional energy reduction policy does. Compared to a cap-and-trade policy, a carbon tax policy yields a much lower GDP-based carbon shadow price but a higher GSPV-based price. Improving the stringency of either a cap-and-trade policy or a carbon tax policy has limit impact on the industrial structure of the whole economy despite the impact on both the GDP and the GSPV are different between these two policies. The comparison of the two carbon pricing policies mainly implies that a carbon tax is more cost-effective than cap-and-trade for a carbon- and trade-intensive economy, but cap-and-trade has lower sector-level impacts than carbon tax especially when the cap restriction is loose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bretschger, L., Ramer, R., et al. (2011). Growth effects of carbon policies: applying a fully dynamic CGE model with heterogeneous capital. Resource and Energy Economics, 33(4), 963–980.

    Article  Google Scholar 

  • Chen, H., & Nie, W. (2018). Slacks-based efficiency measures and spatial analysis for measuring the shadow price of Chinese carbon emissions. Acta Ecologica Sinica, 38(14), 5178–5186. (in Chinese).

    Google Scholar 

  • Chen, S. (2011). Marginal Abatement Cost and Environmental Tax Reform in China [J]. Social Sciences in China, 3, 85–100. (in Chinese).

    Google Scholar 

  • Chen, W., Zhou, J., et al. (2017). Effects of an energy tax (carbon tax) on energy saving and emission reduction in Guangdong province-based on a CGE model. Sustainability, 9(5), 681.

    Article  Google Scholar 

  • China Government (2017a). Energy Development in 13th FYP. Retrieved on March 11, 2020 from, http://www.gov.cn/xinwen/2017-01/17/5160588/files/595b9ac5f61d46c4828b99404578eba5.pdf

  • China Government (2017b). Experts' view on the coming environmental protection tax. Retrieved on March 11, 2020, from http://www.gov.cn/zhengce/2017-12/30/content_5251856.htm

  • Goulder, L. H., & Schein, A. R. (2013). Carbon taxes versus cap and trade: a critical review. Climate Change Economics, 4(03), 1350010.

    Article  Google Scholar 

  • Guangdong Provincial Bureau of Statistics (2017). Guangdong Statistical Yearbook.

  • Hannum, C., Cutler, H., et al. (2017). Estimating the implied cost of carbon in future scenarios using a CGE model: The Case of Colorado. Energy Policy, 102, 500–511.

    Article  Google Scholar 

  • IPCC (2006). Emission factor database. Retrieved on September 20, 2020, from https://www.ipcc-nggip.iges.or.jp/EFDB/main.php

  • Jia, Z., & Lin, B. (2020). Rethinking the choice of carbon tax and carbon trading in China. Technological Forecasting and Social Change, 159, 120187.

    Article  Google Scholar 

  • Jiang, W., & Zhang, S. (2018). Robust estimation and application of shadow price of CO2: Evidence from China. Management World, 38(14), 5178–5186. (in Chinese).

    Google Scholar 

  • Meng, S., Siriwardana, M., et al. (2013). The environmental and economic impact of the carbon tax in Australia. Environmental and Resource Economics, 54(3), 313–332.

    Article  Google Scholar 

  • National Bureau of Statistics (2017). China Statistical Yearbook.

  • National Bureau of Statistics (2018). China Energy Statistical Yearbook.

  • NDRC (2016). Notice from National Development and Reform Commission: On the pilot program of energy allowance allocation and trading. Retrieved on March 11, 2020, from http://www.gov.cn/xinwen/2016-09/21/content_5110262.htm

  • Orlov, A., & Grethe, H. (2012). Carbon taxation and market structure: A CGE analysis for Russia. Energy policy, 51, 696–707.

    Article  Google Scholar 

  • Schmidt, N. M., & Fleig, A. (2018). Global patterns of national climate policies: Analyzing 171 country portfolios on climate policy integration. Environmental Science and Policy, 84, 177–185.

    Article  Google Scholar 

  • Shi, M., Li, N., et al. (2011). Impacts of carbon tax policy on CO2 mitigation and economic growth in China. Climate Change Research, 3, 210–216. (in Chinese).

    Google Scholar 

  • Shi, M., Yuan, Y., et al. (2013). Carbon tax, cap-and-trade or mixed policy: Which is better for carbon mitigation? Journal of Management Sciences in China, 16(9), 9–19. (in Chinese).

    Google Scholar 

  • Tang, L., Shi, J., et al. (2016). Designing an emissions trading scheme for China with a dynamic computable general equilibrium model. Energy Policy, 97, 507–520.

    Article  Google Scholar 

  • The Economist (2018). As China gets tough on pollution, will its economy suffer? Retrieved on March 11, 2020, from https://www.economist.com/news/finance-and-economics/21733985-received-wisdom-was-greener-growth-would-be-slower-so-far-hasnt

  • The State Council (2017). Notice on plan of energy conservation and emission reduction in the 13th Five-Year Plan. Retrieved on March 11, 2020, from http://www.gov.cn/zhengce/content/2017-01/05/content_5156789.htm

  • Web of China Carbon Trading (2020). Carbon K curve. Retrieved on September 20, 2020, from http://k.tanjiaoyi.com/wz_chart.html

  • Wissema, W., & Dellink, R. (2007). AGE analysis of the impact of a carbon energy tax on the Irish economy. Ecological Economics, 61(4), 671–683.

    Article  Google Scholar 

  • Wu, R., Dai, H., et al. (2016). Achieving China’s INDC through carbon cap-and-trade: Insights from Shanghai. Applied Energy, 184, 1114–1122.

    Article  Google Scholar 

  • Xu, S., & Zhang, W. (2016). Analysis of impacts of carbon taxes on China’s economy and emissions reduction under different refunds: Based on dynamic CGE Model. China Population, Resources and Environment, 26, 12–46. (in Chinese).

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Science and Technology Project of Guangdong Province (2019A101002085). Thanks are also given to the reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Contributions

Jin-Feng Zhou, Dan Wu, and Wei Chen conceived and designed the methodologies, Jin-Feng Zhou wrote the program code and manuscript draft, Dan Wu revised the draft, and Wei Chen collected and analyzed the data.

Corresponding author

Correspondence to Dan Wu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest. The funding sponsors had no role in the design of the study, collection, analysis, or interpretation of the data, writing of the manuscript, or decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Tables 6, 7, 8, 9, and 10.

Table 6 Departments and codes
Table 7 End use of energy consumption in 7 sectors (104t tce)
Table 8 Guangdong social accounting matrix for 2017 (108 Yuan)
Table 9 Elastic coefficients in the model
Table 10 Balance check for the base year

Appendix 2

2.1 Equations

$$ \begin{gathered} {\text{QA}}\left( a \right) = e = {\text{scaleAa}}\left( a \right)*({\text{deltaAa}}\left( a \right)*{\text{QEVA}}\left( a \right)**{\text{rh}}0{\text{Aa}}\left( a \right) + \left( {1 - {\text{deltaAa}}\left( a \right)} \right) \hfill \\ *{\text{QINTA}}\left( a \right)**{\text{rh}}0{\text{Aa}}\left( a \right))**\left( {1/{\text{rh}}0{\text{Aa}}\left( a \right)} \right) \hfill \\ \end{gathered} $$
(20)
$$ \begin{gathered} {\text{PEVA}}\left( a \right)/{\text{PINTA}}\left( a \right) = e = \left( {{\text{deltaAa}}\left( a \right)/\left( {1 - {\text{deltaAa}}\left( a \right)} \right)} \right) \hfill \\ *\left( {{\text{QINTA}}\left( a \right)/{\text{QEVA}}\left( a \right)} \right)**\left( {1 - {\text{rh}}0{\text{Aa}}\left( a \right)} \right) \hfill \\ \end{gathered} $$
(21)
$$ {\text{PA}}\left( a \right)*{\text{QA}}\left( a \right) = e = {\text{PEVA}}\left( a \right)*{\text{QEVA}}\left( a \right) + {\text{PINTA}}\left( a \right)*{\text{QINTA}}\left( a \right) $$
(22)
$$ \begin{gathered} {\text{QEVA}}\left( a \right) = e = {\text{scaleEVA}}\left( a \right)*({\text{deltaEVA}}\left( a \right)*{\text{QVA}}\left( a \right)**{\text{rh}}0{\text{EVA}}\left( a \right) + \left( {1 - {\text{deltaEVA}}\left( a \right)} \right) \hfill \\ *{\text{QED}}\left( a \right)**{\text{rh}}0{\text{EVA}}\left( a \right))**\left( {1/{\text{rh}}0{\text{EVA}}\left( a \right)} \right) \hfill \\ \end{gathered} $$
(23)
$$ \begin{gathered} {\text{PVA}}\left( a \right)/\left( {\left( {1 + {\text{tvc}}\left( a \right)} \right)*{\text{WE}}} \right) = e = \left( {{\text{deltaEVA}}\left( a \right)/\left( {1 - {\text{deltaEVA}}\left( a \right)} \right)} \right) \hfill \\ *\left( {{\text{QED}}\left( a \right)/{\text{QVA}}\left( a \right)} \right)**\left( {1 - {\text{rh}}0{\text{EVA}}\left( a \right)} \right) \hfill \\ \end{gathered} $$
(24)
$$ {\text{PEVA}}\left( a \right)*{\text{QEVA}}\left( a \right) = e = {\text{PVA}}\left( a \right)*{\text{QVA}}\left( a \right) + \left( {\left( {1 + {\text{tvc}}\left( a \right)} \right)*{\text{WE}}} \right)*{\text{QED}}\left( a \right) $$
(25)
$$ \begin{gathered} {\text{QVA}}\left( a \right) = e = {\text{scaleVA}}\left( a \right)*({\text{deltaVA}}\left( a \right)*{\text{QLD}}\left( a \right)**{\text{rh}}0{\text{VA}}\left( a \right) + \left( {1 - {\text{deltaVA}}\left( a \right)} \right) \hfill \\ *{\text{QKD}}\left( a \right)**{\text{rh}}0{\text{VA}}\left( a \right))**\left( {{\text{1/rh0VA}}\left( {\text{a}} \right)} \right) \hfill \\ \end{gathered} $$
(26)
$$ {\text{WL}}/{\text{WK}} = e = \left( {{\text{deltaVA}}\left( a \right)/\left( {1 - {\text{deltaVA}}\left( a \right)} \right)} \right)*\left( {{\text{QKD}}\left( a \right)/{\text{QLD}}\left( a \right)} \right)**\left( {1 - {\text{rh}}0{\text{VA}}\left( a \right)} \right) $$
(27)
$$ {\text{PVA}}\left( a \right)*{\text{QVA}}\left( a \right) = e = {\text{WL}}*{\text{QLD}}\left( a \right) + {\text{WK}}*{\text{QKD}}\left( a \right) + {\text{tva}}\left( a \right)*{\text{PVA}}\left( a \right)*{\text{QVA}}\left( a \right) $$
(28)
$$ {\text{QINT}}(c1,a) = e = ic1a(c1,a)*{\text{QINTA}}\left( a \right) $$
(29)
$$ {\text{PINTA}}\left( a \right) = e = {\text{sum}}(c1,ic1a(c1,a)*{\text{PQ}}\left( {c1} \right))$$
(30)
$$ {\text{QINT}}(c2,a) = e = ic2a(c2,a)*{\text{QED}}\left( a \right) $$
(31)
$$ \begin{gathered} {\text{QA}}\left( a \right) = e = {\text{scaleCET}}\left( a \right)*({\text{deltaCET}}\left( a \right)*{\text{QDA}}\left( a \right)**{\text{rh}}0{\text{CET}}\left( a \right) + \left( {1 - {\text{deltaCET}}\left( a \right)} \right) \hfill \\ *{\text{QE}}\left( a \right)**{\text{rh}}0{\text{CET}}\left( a \right))**\left( {1/{\text{rh}}0{\text{CET}}\left( a \right)} \right) \hfill \\ \end{gathered} $$
(32)
$$ {\text{PDA}}\left( a \right)/{\text{PE}}\left( a \right) = e = \left( {{\text{deltaCET}}\left( a \right)/\left( {1 - {\text{deltaCET}}\left( a \right)} \right)} \right)*({\text{QE}}\left( a \right)/{\text{QDA}}\left( a \right))**\left( {1 - {\text{rh}}0{\text{CET}}\left( a \right)} \right) $$
(33)
$$ {\text{PA}}\left( a \right)*{\text{QA}}\left( a \right) = e = {\text{PDA}}\left( a \right)*{\text{QDA}}\left( a \right) + {\text{PE}}\left( a \right)*{\text{QE}}\left( a \right) $$
(34)
$$ {\text{QDA}}\left( a \right) = e = {\text{scaleQDA}}\left( a \right)*\left( \begin{gathered} {\text{deltaQDA}}\left( a \right)*{\text{QDAL}}\left( a \right)**{\text{rh}}0{\text{QDA}}\left( a \right) \, \hfill \\ + \left( {1 - {\text{deltaQDA}}\left( a \right)} \right)*{\text{QDAP}}\left( a \right)**{\text{rh}}0{\text{QDA}}\left( a \right) \hfill \\ \end{gathered} \right)**\left( {1/{\text{rh}}0{\text{QDA}}\left( a \right)} \right) $$
(35)
$$ \begin{gathered} {\text{PDAL}}\left( a \right)/{\text{PDAP}}\left( a \right) = e = \left( {{\text{deltaQDA}}\left( a \right)/\left( {1 - {\text{deltaQDA}}\left( a \right)} \right)} \right) \hfill \\ * \, \left( {{\text{QDAP}}\left( a \right)/{\text{QDAL}}\left( a \right)} \right)**\left( {1 - {\text{rh}}0{\text{QDA}}\left( a \right)} \right) \hfill \\ \end{gathered} $$
(36)
$$ {\text{PDA}}\left( a \right)*{\text{QDA}}\left( a \right) = e = {\text{PDAL}}\left( a \right)*{\text{QDAL}}\left( a \right) + {\text{PDAP}}\left( a \right)*{\text{QDAP}}\left( a \right)$$
(37)
$$ \begin{gathered} {\text{QQ}}\left( c \right) = e = {\text{scaleQq}}\left( c \right)*({\text{deltaQq}}\left( c \right)*{\text{QDC}}\left( c \right)**{\text{rh}}0{\text{Qq}}\left( c \right) \hfill \\ + \left( {1 - {\text{deltaQq}}\left( c \right)} \right)*{\text{QM}}\left( c \right)**{\text{rh}}0{\text{Qq}}\left( c \right))**\left( {1/{\text{rh}}0{\text{Qq}}\left( c \right)} \right) \hfill \\ \end{gathered} $$
(38)
$$ {\text{PDC}}\left( c \right)/{\text{PM}}\left( c \right) = e = \left( {{\text{deltaQq}}\left( c \right)/\left( {1 - {\text{deltaQq}}\left( c \right)} \right)} \right)*({\text{QM}}\left( c \right)/{\text{QDC}}\left( c \right))**\left( {1 - {\text{rh}}0{\text{Qq}}\left( c \right)} \right) $$
(39)
$$ {\text{PQ}}\left( c \right)*{\text{QQ}}\left( c \right) = e = {\text{PDC}}\left( c \right)*{\text{QDC}}\left( c \right) + {\text{PM}}\left( c \right)*{\text{QM}}\left( c \right) $$
(40)
$$ \begin{gathered} {\text{QDC}}\left( c \right) = e = {\text{scaleQDC}}\left( c \right)*({\text{deltaQDC}}\left( c \right)*{\text{QDCL}}\left( c \right)**{\text{rh}}0{\text{QDC}}\left( c \right) \hfill \\ + \left( {1 - {\text{deltaQDC}}\left( c \right)} \right)*{\text{QDCP}}\left( c \right)**{\text{rh}}0{\text{QDC}}\left( c \right))**\left( {1/{\text{rh}}0{\text{QDC}}\left( c \right)} \right) \hfill \\ \end{gathered} $$
(41)
$$ \begin{gathered} {\text{PDCL}}\left( c \right)/{\text{PDCP}}\left( c \right) = e = \left( {{\text{deltaQDC}}\left( c \right)/\left( {1 - {\text{deltaQDC}}\left( c \right)} \right)} \right) \hfill \\ *\left( {{\text{QDCP}}\left( c \right)/{\text{QDCL}}\left( c \right)} \right)**\left( {1 - {\text{rh}}0{\text{QDC}}\left( c \right)} \right) \hfill \\ \end{gathered} $$
(42)
$$ {\text{PDC}}\left( c \right)*{\text{QDC}}\left( c \right) = e = {\text{PDCL}}\left( c \right)*{\text{QDCL}}\left( c \right) + {\text{PDCP}}\left( c \right)*{\text{QDCP}}\left( c \right)$$
(43)
$$ {\text{YH}} = e = {\text{WL}}*{\text{QLS}} + {\text{shifhk}}*{\text{WK}}*{\text{QKS}} + {\text{transfrhg}}0 $$
(44)
$$ {\text{PQ}}\left( c \right)*{\text{QH}}\left( c \right) = e = {\text{PQ}}\left( c \right)*{\text{shrh}}\left( c \right)*{\text{mpc}}*\left( {1 - {\text{tih}}} \right)*{\text{YH}} $$
(45)
$$ {\text{YENT}} = e = {\text{shifentk}}*{\text{WK}}*{\text{QKS}} + {\text{transfrentg}}0 $$
(46)
$$ {\text{ENTSAV}} = e = \left( {1 - {\text{tiENT}}} \right)*{\text{YENT}} $$
(47)
$$ \begin{gathered} {\text{YG}} = e = {\text{sum}}(a,{\text{tva}}\left( a \right)*{\text{QVA}}\left( a \right)*{\text{PVA}}\left( a \right)) + {\text{tih}}*{\text{YH}} + {\text{tiENT}}*{\text{YENT}} \hfill \\ + {\text{sum}}(c,{\text{tm}}\left( c \right)*{\text{pwm}}\left( c \right)*{\text{QM}}\left( {cc} \right)*{\text{EXR}}) \, + {\text{sum}}(a,{\text{tvc}}\left( a \right)*{\text{QED}}\left( a \right)*{\text{WE}}) \hfill \\ \end{gathered} $$
(48)
$$ \begin{gathered} {\text{EG}} = e = {\text{sum}}(cc,PQ\left( c \right)*QG0\left( c \right)) + {\text{transfrhg}}0 + {\text{transfrent}}G0 \hfill \\ + {\text{sum}}(a,te\left( a \right)*{\text{pwe}}\left( a \right)*{\text{QE}}\left( a \right)*{\text{EXR}}) \hfill \\ \end{gathered} $$
(49)
$$ {\text{QQ}}\left( c \right) = e = {\text{sum}}(a,{\text{QINT}}(c,a)) + {\text{QH}}\left( c \right) + {\text{QINV}}0\left( c \right) + {\text{QG}}0\left( c \right) $$
(50)
$$ {\text{sum}}(a,{\text{QLD}}\left( a \right)) = e = {\text{QLS}} $$
(51)
$$ {\text{sum}}(a,{\text{QKD}}\left( a \right)) = e = {\text{QKS}} $$
(52)
$$ {\text{sum}}(a,{\text{QED}}\left( a \right)) = e = {\text{QES}} $$
(53)
$$ {\text{GSAV}} = e = {\text{YG}} - {\text{EG}} $$
(54)
$$ {\text{sum}}(c,{\text{PDCP}}\left( c \right)*{\text{QDCP}}\left( c \right)) = e = {\text{sum}}(a,{\text{PDAP}}\left( a \right)*{\text{QDAP}}\left( a \right)) + {\text{PSAV}} $$
(55)
$$ {\text{sum}}(c,{\text{pwm}}\left( c \right)*{\text{QM}}\left( c \right)) = e = {\text{sum}}(a,{\text{pwe}}\left( a \right)*{\text{QE}}\left( a \right)) + {\text{FSAV}} $$
(56)
$$ {\text{FSAV}} = e = {\text{FSAV}}0 $$
(57)
$$ {\text{QLS}} \cdot fx = {\text{QLS}}0 $$
(58)
$$ {\text{QKS}} \cdot fx = {\text{QKS}}0 $$
(59)
$$ {\text{WE}} \cdot {\text{FX}} = 1 $$
(60)

Parameters and Variables

Symbol Description.

a Activity department.

c Commercial department.

c1 No-energy commercial department.

c2 energy commercial department.

deltaAa(a) Share parameter of CES function of QA.

deltaEVA(a) Share parameter of CES function of QEVA.

deltaVA(a) Share parameter of CES function of QVA.

deltaCET(a) Share parameter of CET function of QA.

deltaQDA(a) Share parameter of CET function of QDA.

deltaQq(c) Share parameter of Armington function of QQ.

deltaQDC(c) Share parameter of Armington function of QDC.

EG Government expend.

EH Habitant expend.

EINV investment.

ENTSAV Enterprise saving.

EXR Exchange rate.

FSAV Foreign saving.

GDP Real gross domestic product.

GSAV Government saving.

ic1a(c1, a) Consumption coefficient of non-energy product.

ic2a(c1, a) Consumption coefficient of energy product.

mpc Marginal propensity to consume.

PA(a) Price of product a.

PDA(a) Price of domestic product for domestic use.

PDAL(a) Price of provincial product for use in the province.

PDAP(a) Price of provincial product for use out of the province.

PDC(c) Price of domestic commodity for domestic use.

PDCL(c) Price of provincial commodity for use in the province.

PDCP(c) Price of provincial commodity for use out of the province.

PE(a) Price of domestic product for export.

PM(c) Price of import commodity.

PGDP Price index of GDP.

PINTA(a) Price of intermediate input.

PQ(c) Price of domestic commodity.

PVA(a) Price of the added value.

PEVA Price of the bundle of energy and added value.

pwe(a) World price of product for out-port.

pwm(c) World price of commodity for in-port.

QA(a) Quantity of product a.

QE(a) Quantity of product a for export.

QED(a) Demand of fixed energy.

QES Total supply of energy.

QG(c) Demand of government for commodity c.

QH(c) Demand of habitant for commodity c.

QINT(c, a) Department quantity of intermediate input.

QINTA(a) Total quantity of intermediate input.

QINV(c) Final demand of investment for commodity c.

QDA(a) Quantity of domestic product used in the country.

QDAL(a) Quantity of provincial product used in the province.

QDAP(a) Quantity of provincial product used out of the province.

QDC(c) Quantity of domestic commodity used in the country.

QDCL(c) Quantity of provincial commodity used in the province.

QDCP(c) Price of provincial commodity used out of the province.

QKD(a) Demand for capital.

QKS Supply of capital.

QLD(a) Demand for labor.

QLS Supply of labor.

QM(c) Quantity of import.

QQ(c) Quantity of commodity in domestic market.

QVA(a) Quantity of added value.

QEVA Quantity of the bundle of energy and added-value.

rhoAa(a) Power parameter of CES function of QA.

rhoEVA(a) Power parameter of CES function of QEVA.

rhoVA(a) Power parameter of CES function of QVA.

rhoQq(c) Power parameter of Armington function of QQ.

rhoQDC(c) Power parameter of Armington function of QDC.

rhoCET(c) Power parameter of CET function of QA.

rhoQDC(c) Power parameter of CET function of QDA.

scaleAa(a) scale parameter of CES function of QA.

scaleEVA(a) scale parameter of CES function of QEVA.

scaleVA(a) scale parameter of CES function of VA.

scaleCET(c) scale parameter of CET function of QA.

scaleQDA(c) scale parameter of CET function of QDA.

scaleQq(c) scale parameter of Armington function of QQ.

scaleQDC(c) scale parameter of Armington function of QDC.

shifentk Share of capital revenue to enterprise.

shifhk Share of capital revenue to habitant.

shrh(c) Expanding share of habitant revenue to commodity c.

te(c) Export subsidy rate.

tiEnt Income tax of enterprise.

tih Income tax of habitant.

tm(c) Tariff of commodity c.

transfrentg Transferred revenue from government to enterprise.

transfrhg Transferred revenue from government to habitant.

tva(a) Indirect tax for department a.

tvc(a) Energy tax for department a.

VBIS Dummy variable for saving-investment check.

WE Price of fixed energy.

WK Price of capital.

WL Price of labor.

YENT Enterprise revenue.

YG Government revenue.

YH Habitant revenue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, JF., Wu, D. & Chen, W. Cap and Trade Versus Carbon Tax: An Analysis Based on a CGE Model. Comput Econ 59, 853–885 (2022). https://doi.org/10.1007/s10614-021-10104-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-021-10104-x

Keywords

Navigation