Skip to main content
Log in

Uniformly accurate nested Picard integrators for a system of oscillatory ordinary differential equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

A uniformly second order accurate nested Picard iterative integrator (NPI) is proposed to solve a system of oscillatory ordinary equations involving a parameter \(0<\varepsilon \le 1\). The solution of this system propagates wave with \(O(\varepsilon ^2)\) wavelength and \(O(\varepsilon ^4)/O(\varepsilon ^2)\) amplitude for well-prepared/ill-prepared initial data. Based on the NPI and the exponential integrator, a uniformly accurate (w.r.t \(\varepsilon \)) second order numerical scheme with \(O(\tau ^2)\) error has been developed. The method can be generalized to higher order. Numerical tests are presented to confirm our error estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bao, W., Cai, Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50(2), 492–521 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bao, W., Cai, Y.: Uniform and optimal error estimates of an exponential wave integrator sine pseudospectral method for the nonlinear Schrodinger equation with wave operator. SIAM J. Numer. Anal. 52(3), 1103–1127 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bao, W., Cai, Y., Zhao, X.: A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 52(5), 2488–2511 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bao, W., Dong, X., Xin, J.: Comparisons between Sine-Gordon and perturbed nonlinear Schrödinger equations for modeling light bullets beyond critical collapse. Physica D 239(13), 1120–1134 (2010)

    Article  MathSciNet  Google Scholar 

  5. Bao, W., Dong, X., Zhao, X.: Uniformly accurate multiscale time integrators for highly oscillatory second order differential equations. J. Math. Study 47(2), 111–150 (2014)

    Article  MathSciNet  Google Scholar 

  6. Baumstark, S., Faou, E., Schratz, K.: Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting. Math. Comput. 87(311), 1227–1254 (2018)

    Article  MathSciNet  Google Scholar 

  7. Bergé, L., Colin, T.: A singular perturbation problem for an envelope equation in plasma physics. Physica D 84(3–4), 437–459 (1995)

    Article  Google Scholar 

  8. Cai, Y., Wang, Y.: Uniformly accurate nested Picard iterative integrators for the Dirac equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 57(4), 1602–1624 (2019)

    Article  MathSciNet  Google Scholar 

  9. Chartier, P., Mauser, N.J., Mehats, F., Zhang, Y.: Solving highly-oscillatory NLS with SAM: numerical efficiency and long-time behavior. Discret. Contin. Dyn. Syst. Ser. S 5, 1327–1349 (2016)

    Article  MathSciNet  Google Scholar 

  10. Cohen, D., Jahnke, T., Lorenz, K., Lubich, C.: Numerical integrators for highly oscillatory hamiltonian systems: a review. In: Analysis, Modeling and Simulation of Multiscale Problems, pp. 553–576. Springer (2006)

  11. Colin, T., Fabrie, P.: Semidiscretization in time for nonlinear schrödinger-waves equations. Discret. Contin. Dyn. Syst. 4, 671–690 (1998)

    Article  Google Scholar 

  12. Condon, M., Deano, A., Iserles, A.: On second-order differential equations with highly oscillatory forcing terms. Proc. R. Soc. A-Math. Phys. 466(2118), 1809–1828 (2010)

    MathSciNet  MATH  Google Scholar 

  13. García-Archilla, B., Sanz-Serna, J., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20(3), 930–963 (1998)

    Article  MathSciNet  Google Scholar 

  14. Grimm, V.: On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations. Numer. Math. 100(1), 71–89 (2005)

    Article  MathSciNet  Google Scholar 

  15. Guo, B., Liang, H.: On the problem of numerical calculation for a class of systems of nonlinear schrödinger equations with wave operator. J. Numer. Methods Comput. Appl. 4, 176–182 (1983)

    MathSciNet  Google Scholar 

  16. Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38(2), 414–441 (2000)

    Article  MathSciNet  Google Scholar 

  17. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, p. 31. Springer, Berlin (2006)

    MATH  Google Scholar 

  18. Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83(3), 403–426 (1999)

    Article  MathSciNet  Google Scholar 

  19. Hochbruck, M., Ostermann, A.: Exponential integrators. ACTA Numer. 19, 209–286 (2010)

    Article  Google Scholar 

  20. Lorenz, K., Jahnke, T., Lubich, C.: Adiabatic integrators for highly oscillatory second-order linear differential equations with time-varying eigendecomposition. BIT 45(1), 91–115 (2005)

    Article  MathSciNet  Google Scholar 

  21. Machihara, S., Nakanishi, K., Ozawa, T.: Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations. Math. Ann. 322(3), 603–621 (2002)

    Article  MathSciNet  Google Scholar 

  22. Reich, S.: Backward error analysis for numerical integrators. SIAM J. Numer. Anal. 36(5), 1549–1570 (1999)

    Article  MathSciNet  Google Scholar 

  23. Sanz-Serna, J.: Mollified impulse methods for highly oscillatory differential equations. SIAM J. Numer. Anal. 46(2), 1040–1059 (2008)

    Article  MathSciNet  Google Scholar 

  24. Schoene, A.Y.: On the nonrelativistic limits of the Klein-Gordon and Dirac equations. J. Math. Anal. Appl. 71(1), 36–47 (1979)

    Article  MathSciNet  Google Scholar 

  25. Tsutsumi, M.: Nonrelativistic approximation of nonlinear Klein–Gordon equations in two space dimensions. Nonlinear Anal. Theory, Methods Appl. 8(6), 637–643 (1984)

  26. Wang, B., Wu, X.: A new high precision energy-preserving integrator for system of oscillatory second-order differential equations. Phys. Lett. A 376(14), 1185–1190 (2012)

    Article  MathSciNet  Google Scholar 

  27. Wang, T., Zhang, L.: Analysis of some new conservative schemes for nonlinear Schrödinger equation with wave operator. Appl. Math. Comput. 182(2), 1780–1794 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Xin, J.: Modeling light bullets with the two-dimensional sine-Gordon equation. Physica D 135(3–4), 345–368 (2000)

    Article  MathSciNet  Google Scholar 

  29. Zhao, X.: A combination of multiscale time integrator and two-scale formulation for the nonlinear Schrödinger equation with wave operator. J. Comput. Appl. Math. 326, 320–336 (2017)

    Article  MathSciNet  Google Scholar 

  30. Zhao, X.: Uniformly accurate multiscale time integrators for second order oscillatory differential equations with large initial data. BIT Numer. Math. 57(3), 649–683 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Part of this work was done when the authors were visiting Institute for Mathematical Sciences, National University of Singapore in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongyong Cai.

Additional information

Communicated by David Cohen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by NSFC Grants 11771036 and 91630204 (Y. Cai).

Appendices

Appendix A: notations related to the nonlinear terms

Denoting

$$\begin{aligned} f^n_{+,l}(s)=\sum _{j=1}^d f_{+,l,j}^n e^{-i \beta ^-_j s},\quad f^n_{-,l}(s)=\sum _{j=1}^d f_{-,l,j}^n e^{i \beta ^-_j s},\quad l=1,2,\ldots ,d, \end{aligned}$$

the expressions of \(F_{k,l}^n(s)=F_{k,l}(\varvec{y}(t_n),\dot{\varvec{y}}(t_n); s)\) (\(l=1,\ldots ,d\), \(k=\pm 1,\ldots ,\pm 5\)) are given as:

$$\begin{aligned} \begin{aligned} F^n_{0,l}(s) =&|f^n_{+,l}(s)|^2+ |f^n_{-,l}(s)|^2, \quad F^n_{1,l}(s) = 2 {\text {Re}} (-\overline{f^n_l}f^n_{-,l}(s)),\\ F^n_{2,l}(s) =&\overline{f^n_l} f_{+,l}^n(s) \\ F^n_{3,l}(s) =&f^n_{+,l}(s) \overline{f^n_{-,l}(s)}, \quad F^n_{4,l}(s) = -\overline{f^n_l}f^n_{-,l}(s),\quad F^n_{5,l}(s) = \overline{f^n_l} f^n_{-,l}(s), \\ F^n_{-k,l}(s)=&\overline{F^n_{k,l}(s)}.\end{aligned} \end{aligned}$$
(A.1)

\(g_{k,l}^n(s)=g_{k,l}(\varvec{y}(t_n),\dot{\varvec{y}}(t_n); s)\) (\(l=1,\ldots ,d\)) are defined as:

$$\begin{aligned} \begin{aligned} g^n_{0,l}(s) =&F^n_{-3,l}(s)f^n_{+,l}(s) + F^n_{0,l}(s) f^n_{-,l}(s), \\ g^n_{1,l}(s) =&F^n_{-4,l}(s) f^n_{+,l}(s)+ F^n_{1,l}(s) f^n_{-,l}(s)-F^n_{0,l}(s) f^n_l, \\ g^n_{2,l}(s) =&F^n_{-5,l}(s) f^n_{+,l}(s) + F^n_{2,l}(s) f^n_{-,l}(s),\\ g^n_{3,l}(s) =&F^n_{-2,l}(s) f^n_{-,l}(s)+ F^n_{-3,l}(s) f^n_l, \quad g^n_{4,l}(s) = F^n_{-3,l}(s) f^n_{-,l}(s) \\ g^n_{5,l}(s) =&F^n_{-4,l}(s) f^n_{+,l}(s) + F^n_{-3,l}(s) (-f^n_l),\quad g^n_{6,l}(s) = F^n_{-5,l}(s) f^n_{-,l}(s), \\ g^n_{7,l}(s) =&F^n_{0,l}(s) f^n_{+,l}(s)+ F^n_{3,l}(s) f^n_{-,l}(s),\\ g^n_{8,l}(s) =&F^n_{1,l}(s) f^n_{+,l}(s)+ F^n_{4,l}(s) f^n_{-,l}(s)+ F^n_{3,l}(s) (-f^n_l), \\ g^n_{9,l}(s) =&F^n_{2,l}(s) f^n_{+,l}(s), \quad g^n_{11,l}(s) =F^n_{3,l}(s) f^n_{+,l}(s) \\ g^n_{10,l}(s) =&F^n_{-2,l}(s) f^n_{+,l}(s) + F^n_{5,l}(s) f^n_{-,l}(s) + F^n_{0,l}(s) f^n_l,\\ g^n_{12,l}(s) =&F^n_{4,l}(s) f^n_{+,l}(s), \quad g^n_{13,l}(s) =F^n_{5,l}(s) f^n_{+,l}(s) + F^n_{3,l}(s) f^n_l. \end{aligned} \end{aligned}$$
(A.2)

The following expressions appear in the 2nd order NPI:

$$\begin{aligned} G_{+,0,k}^n(s)&=G_{+,0,k}(\varvec{y}(t_n), \dot{\varvec{y}}(t_n); s)=e^{is/\varepsilon ^2} (q_{-1,0}(s)g^n_{1,k}(0)+q_{-1,1}(s)g^n_{2,k}(0)\nonumber \\&\quad +q_{-1,-1}(s)g^n_{3,k}(0)\nonumber \\&\quad +q_{-2,0}(s)g^n_{5,k}(0)+q_{-2,1}(s)g^n_{6,k}(0) + q_{0,1}(s)g^n_{9,k}(0) \nonumber \\&\quad + q_{0,-1}(s)g^n_{10,k}(0) +q_{1,0}(s)g^n_{12,k}(0) +q_{1,1}(s)g^n_{13,k}(0)), \nonumber \\ G_{+,1,k}^n(s)&= G_{+,1,k}(\varvec{y}(t_n), \dot{\varvec{y}}(t_n);s)=e^{is/\varepsilon ^2} (s g^n_{7,k}(s/2) + s^2/2 g^n_{8,k}(s/2)),\nonumber \\ G_{+,2,k}^n(s)&= G_{+,2,k}(\varvec{y}(t_n), \dot{\varvec{y}}(t_n); s)=e^{is/\varepsilon ^2}(p_{-1}(s) g_{0,k}^n(0) + q_{-1,0}(s) {\dot{g}}^n_{0,k}(0) \nonumber \\&\quad +p_{-2}(s) g_{4,k}^n(0) + q_{-2,0}(s) {\dot{g}}^n_{4,k}(0)\nonumber \\&\quad +p_{1}(s) g_{11,k}^n(0) + q_{1,0}(s) {\dot{g}}^n_{11,k}(0)), \nonumber \\ G_{+,3,k}(s)&= G_{+,3,k}(\varvec{y}(t_n), \dot{\varvec{y}}(t_n); s) = e^{is/\varepsilon ^2}(q_{-1,0}(s) g^n_{0,k}(0) \nonumber \\&\quad + q_{-2,0}(s) g^n_{4,k}(0) + q_{1,0}(s) g^n_{11,k}(0)),\nonumber \\ G_{-,0,k}^n(s)&=G_{-,0,k}(\varvec{y}(t_n), \dot{\varvec{y}}(t_n); s) = q_{0,1}(s)g^n_{2,k}(0)\nonumber \\&\quad +q_{0,-1}(s)g^n_{3,k}(0)+q_{-1,0}(s)g^n_{5,k}(0)\nonumber \\&\quad +q_{-1,1}(s)g^n_{6,k}(0)+q_{-1,-1}(s)g^n_{8,k}(0)+q_{1,1}(s)g^n_{9,k}(0)\nonumber \\&\quad +q_{1,-1}(s)g^n_{10,k}(0)+q_{2,0}(s)g^n_{12,k}(0)+q_{2,-1}(s)g^n_{13,k}(0),\nonumber \\ G_{-,1,k}^n(s)&= G_{-,1,k}(\varvec{y}(t_n), \dot{\varvec{y}}(t_n);s)=s g^n_{0,k}(s/2) + s^2/2 g^n_{1,k}(s/2),\nonumber \\ G_{-,2,k}^n(s)&= G_{-,2,k}(\varvec{y}(t_n), \dot{\varvec{y}}(t_n);s)=p_{-1}(s) g_{4,k}^n(0) + q_{-1,0}(s) {\dot{g}}^n_{4,k}(0) \nonumber \\&\quad +p_{1}(s) g_{7,k}^n(0) + q_{1,0}(s) {\dot{g}}^n_{7,k}(0)\nonumber \\&\quad +p_{2}(s) g_{11,k}^n(0) + q_{2,0}(s) {\dot{g}}^n_{11,k}(0),\nonumber \\ G_{-,3,k}(s) =&G_{-,3,k}(\varvec{y}(t_n), \dot{\varvec{y}}(t_n);s) =q_{-1,0}(s) g^n_{4,k}(0) + q_{-2,0}(s) g^n_{7,k}(0) \nonumber \\&\qquad + q_{1,0}(s)g^n_{11,k}(0). \end{aligned}$$
(A.3)

Appendix B: proof of Lemma 3.1

Denote local truncation error by \(\varvec{\xi }^{n}:=\varvec{y}(t_{n+1}) - \varvec{S}(\varvec{y}(t_n), \dot{\varvec{y}}(t_n)), \, \dot{\varvec{\xi }}^{n}:=\dot{\varvec{y}}(t_{n+1}) - \dot{\varvec{S}}(\varvec{y}(t_n), \dot{\varvec{y}}(t_n))\). The local error can be easily verified by following the iterations for designing the scheme 2.21.

By the construction of NPI (2.21), we will first estimate the first order NPI approximation \(\varvec{y}^{n,1}(s)\). Noticing function \(F(\varvec{y})\varvec{y}\) (here \(\text {diag}(\varvec{y} \varvec{y}^H) \varvec{y}\)) is Lipschitz on bounded interval \([-(M+1),(M+1)]^{d}\) with some Lipschitz constant \(L_M\), which means:

$$\begin{aligned} ||a_l|^2 a_l - |b_l|^2 b_l| \le L_M\Vert \varvec{a}-\varvec{b}\Vert _2, \quad \forall 1\le l\le d. \end{aligned}$$

For the integration kernel \(\kappa (t)\), we have \(|\kappa _l(t)| \le 2,\forall 0\le t\le \tau \). Therefore, we have

$$\begin{aligned}&|y_l(t_n+s) - y^{n,1}_l(s) |\\&\quad \le \sum _{j,k=1}^d |\overline{u_{jl}} u_{jk} \gamma _j|\int _{0}^{s} |\kappa _j(s-w)| \left| |y_k(t_n)|^2 y_k(t_n) - |y_k(t_n+w)|^2 y_k(t_n+w) \right| dw\\&\qquad +\sum _{j,k=1}^d |\overline{u_{jl}} u_{jk} \gamma _j| \bigg (\left| \int _0^s e^{-iw/\varepsilon ^2} e^{-i \beta ^-_j (s-w)} |y_k(t_n+w)|^2 y_k(t_n+w) dw \right. \\&\qquad \left. - p_{-1}(s)|y_k(t_n+w)|^2 y_k(t_n+w)\right| \\&\qquad +\left| \int _0^s e^{i \beta ^-_j (s-w)} |y_k(t_n+w)|^2 y_k(t_n+w) dw - s |y_k(t_n+w)|^2 y_k(t_n+w)\right| \bigg )\\&\quad \lesssim \int _{0}^{s} L \Vert \varvec{y}(t_n+w)-\varvec{y}(t_n)\Vert _2 dw+ \sum _{j,k=1}^d \int _0^s |e^{i \beta ^-_j (s-w)} -1| |y_k(t_n+w)|^3 dw\\&\quad \lesssim \int _{0}^{s} L w\max _{t\in [0,\tau ]}\Vert \dot{\varvec{y}}(t_n+t)\Vert _2 dw+\sum _{j,k=1}^d \int _0^s |\beta ^-_j (s - w)| |y_k(t_n+w)|^3 dw\\&\quad \lesssim s^2, \quad \forall 0\le s \le \tau , 1\le l\le d. \end{aligned}$$

Thus, we know that there exists \(\tau _0>0\) such that for \(0<s\le \tau <\tau _0\), \(\Vert \varvec{y}^{n,1}(s)\Vert _\infty \le \Vert \varvec{y}(t_n+s)\Vert _\infty +1\le M+1\).

Continue with the second NPI approximation,

$$\begin{aligned}&|y_l(t_n+s) - y^{n,2}_{l}(s) |\\&\quad \le \sum _{j,k=1}^d |\overline{u_{jl}} u_{jk} \gamma _j|\int _{0}^{s} |\kappa _j(s-w)| \left| |y^{n,1}_{k}(w)|^2 y^{n,1}_{k}(w) \right. \\&\qquad \left. -\, |y_k(t_n+w)|^2 y_k(t_n+w) \right| dw +| R_{2,l}^n(s)|\\&\qquad \le C \int _{0}^{s} L \Vert \varvec{y}(t_n+w)-\varvec{y}^{n,1}(w)\Vert _2 dw +| R_{2,l}^n(s)| \lesssim s^3+ | R_{2,l}^n(s)|, \quad \forall 1\le l\le d. \end{aligned}$$

where \(\varvec{R}_{2}^n(s) =(R_{2,1}^n(s),\ldots ,R_{2,d}^{n}(s))^T\) is the error for approximating the integrals in (2.17). By construction, we write \(\varvec{R}_{2}^n(s) = \varvec{D}_{2}^n(s) + \varvec{Q}_{2}^n(s)\), where \(\varvec{D}_{2}^n(s)\) is the error introduced by discarded term in formula (2.15) and (2.16), \(\varvec{Q}_{2}^n(s)\) is the error introduced by numerical quadrature.

To estimate \(\varvec{D}_{2}^n(s)\), we write

$$\begin{aligned} D_{2,l}^n(s)&= \sum _{j,k=1}^d i\overline{u_{jl}} u_{jk} \gamma _j \int _0^{s} \kappa _j(s-w) \\&\quad \left( e^{3iw/\varepsilon ^2} \left( \sum _{m=1}^d f_{+,k,m}^n e^{-i \beta _m^- w}\right) \left( p_{-1}^2(w) |f_k^n|^2 \right) \right) dw \\&\quad +\sum _{j,k=1}^d i\overline{u_{jl}} u_{jk} \gamma _j \int _0^{s}\kappa _j(s-w) \\&\quad \left( -e^{3iw/\varepsilon ^2}\left( \sum _{m=1}^d f_{+,k,m}^n e^{-i \beta _m^- w}\right) \left( p_{-1}(w) w|f_k^n|^2 \right) \right) dw \\&\quad +\sum _{j,k=1}^d i\overline{u_{jl}} u_{jk} \gamma _j \int _0^{s} \kappa _j(s-w)\left( e^{2iw/\varepsilon ^2}\right. \\&\left. \quad \left( \sum _{m=1}^d f_{-,k,m}^n e^{i \beta _m^- w}\right) \left( p_{-1}^2(w) |f_k^n|^2 \right) \right) dw\\&\quad +\cdots , \end{aligned}$$

where other similar terms are omitted for simplicity. Noticing \(p_0(w) =w\), \(\varvec{D}_{2}^n(s)\) includes every term containing integrated product of more than one \(p_k(w),k = -1,0,1\). We estimate one of these terms, and the others can be proved similarly. Since \(\gamma _j = (1+4\varepsilon ^2 d_{jj})^{-1/2}\) and \(\kappa _j(t) = e^{i \beta _j^+ t} - e^{i \beta _j^- t}\) are bounded for \( j = 1,2,\ldots ,d\), there holds

$$\begin{aligned}&\left| \sum _{j,k=1}^d i\overline{u_{jl}} u_{jk} \gamma _j \int _0^{s} \kappa _j(s-w) \left( e^{3iw/\varepsilon ^2} \left( \sum _{m=1}^d f_{+,k,m}^n e^{-i \beta _m^- w}\right) \left( p_{-1}^2(w) |f_k^n|^2 \right) \right) dw\right| \\&\quad \le C \int _0^{s} \sum _{m=1}^d \left( |y_m(t_n)| + \varepsilon ^2|{\dot{y}}_m(t_n)|\right) \left( \sum _{k=1}^d w^2 |y_k^n|^6 \right) dw \lesssim \int _0^{s} w^2 dw \lesssim s^3. \end{aligned}$$

Then we can derive \(|D_{2,l}^n(s)| \lesssim s^3, l = 1,2,\ldots ,d\).

To estimate \(\varvec{Q}_{2}^n(s)\), we write

$$\begin{aligned} Q_{2,l}^n(s)&= \sum _{j,k=1}^d i\overline{u_{jl}} u_{jk} \gamma _j e^{\frac{i}{\varepsilon ^2}s} \left( \int _0^s e^{i \beta ^-_j (s-w)} w g_{1,k}^n(w) dw - e^{i \beta ^-_j s/2} \frac{s^2}{2} g_{1,k}^n(\frac{s}{2})\right) \\&\quad +\cdots (\text {error of other type 1 error terms})\\&\quad +\sum _{j,k=1}^d i\overline{u_{jl}} u_{jk} \gamma _j e^{\frac{i}{\varepsilon ^2}s} \left( \int _0^s e^{-\frac{i}{\varepsilon ^2}w} e^{-i \beta ^-_j (s-w)} p_1(w) g_{2,k}^n(w) dw - q_{-1,1}(s) g_{2,k}^n(0) \right) \\&\quad +\cdots (\text {error of other type 2 error terms})\\&\quad +\sum _{j,k=1}^d i\overline{u_{jl}} u_{jk} \gamma _j e^{\frac{i}{\varepsilon ^2}s} \bigg (\int _0^s e^{-\frac{i}{\varepsilon ^2}w} e^{-i \beta ^-_j (s-w)} g_{0,k}^n(w) dw \\&\qquad - e^{-i \beta ^-_j s} (p_{-1}(s) g_{0,k}^n(0) + q_{-1,0}(s) (i \beta ^-_l g_{0,k}^n(0) + {\dot{g}}_{0,k}^n(0)))\bigg )\\&\quad +\cdots (\text {error of other type 3 error terms}), \end{aligned}$$

where classification of type 1, 2, 3 terms are introduced for numerical quadrature to calculate expression (2.17). For simplicity, we prove the estimates for one of each type of terms, and the proof can be easily extended to the other terms.

First we prove the boundedness of \(g_{m,k}^n(t)\), \({\dot{g}}_{m,k}^n(t)\) and \( \ddot{g}_{m,k}^n(t)\), \(m = 1,2,\ldots , 13, k = 1,2,\ldots ,d\) for \(\forall 0<t<\tau \). Notice all \(g_{m,k}^n(t)\) share a similar structure, here we only prove for \(g_{4,k}^n(t)\).

$$\begin{aligned} g_{4,k}^n(t)&= \left( \sum _{j=1}^d \overline{f_{+,k,j}^n} e^{i \beta _j^- t} \right) \left( \sum _{j=1}^d f_{-,k,j}^n e^{i \beta _j^- t} \right) ^2 ,\\ {\dot{g}}_{4,k}^n(t)&= \left( \sum _{j=1}^d i \beta _j^- \overline{f_{+,k,j}^n} e^{i \beta _j^- t} \right) \left( \sum _{j=1}^d f_{-,k,j}^n e^{i \beta _j^- t} \right) ^2\\&\quad + 2 \left( \sum _{j=1}^d \overline{f_{+,k,j}^n} e^{i \beta _j^- t} \right) \left( \sum _{j=1}^d i \beta _j^- f_{-,k,j}^n e^{i \beta _j^- t} \right) \left( \sum _{j=1}^d f_{-,k,j}^n e^{i \beta _j^- t} \right) ,\\ \ddot{g}_{4,k}^n(t)&= \left( \sum _{j=1}^d -(\beta _j^-)^2 \overline{f_{+,k,j}^n} e^{i \beta _j^- t} \right) \left( \sum _{j=1}^d f_{-,k,j}^n e^{i \beta _j^- t} \right) ^2 \\&\quad + 4 \left( \sum _{j=1}^d i \beta _j^- \overline{f_{+,k,j}^n} e^{i \beta _j^- t} \right) \left( \sum _{j=1}^d i \beta _j^- f_{-,k,j}^n e^{i \beta _j^- t} \right) \left( \sum _{j=1}^d f_{-,k,j}^n e^{i \beta _j^- t} \right) \\&\quad +2 \left( \sum _{j=1}^d \overline{f_{+,k,j}^n} e^{i \beta _j^- t} \right) \left( \sum _{j=1}^d - (\beta _j^-)^2 f_{-,k,j}^n e^{i \beta _j^- t} \right) \left( \sum _{j=1}^d f_{-,k,j}^n e^{i \beta _j^- t} \right) \\&\quad + 2 \left( \sum _{j=1}^d \overline{f_{+,k,j}^n} e^{i \beta _j^- t} \right) \left( \sum _{j=1}^d i \beta _j^- f_{-,k,j}^n e^{i \beta _j^- t} \right) ^2. \end{aligned}$$

Since \(\beta _j^-\) are bounded \(\forall j = 1,2,\ldots ,d\), and \(|f_{+,k,j}^n|\lesssim |y_k(t_n)| + \varepsilon ^2 |{\dot{y}}_k(t_n)|\), \(|f_{-,k,j}^n|\lesssim |y_k(t_n)| + \varepsilon ^2 |{\dot{y}}_k(t_n)|\), \(|f_k^n| \le |y_k(t_n)|^3\) are also bounded by the assumption of the exact solution, we have

$$\begin{aligned} g_{k,l}^n(t) \lesssim 1, \, {\dot{g}}_{k,l}^n(t) \lesssim 1, \, \ddot{g}_{k,l}^n(t) \lesssim 1, \forall k=1,2,\ldots ,13, \, l=1,2,\ldots d. \end{aligned}$$

Then we estimate \(Q_{2,l}^n(s)\).

Type 1. We have

$$\begin{aligned}&\left| \sum _{j,k=1}^d i\overline{u_{jl}} u_{jk} \gamma _j e^{\frac{i}{\varepsilon ^2}s} \left( \int _0^s e^{i \beta ^-_j (s-w)} w g_{1,k}^n(w) dw - e^{i \beta ^-_j s/2} \frac{s^2}{2} g_{1,k}^n(\frac{s}{2})\right) \right| \\&\quad \lesssim \sum _{j,k=1}^d \int _0^s ((w-s/2) |{\dot{\Theta }}_k^j(s/2)| + (w-s/2)^2 |\ddot{\Theta }_k^j(\xi _k^j(w))| )dw\\&\qquad \le \sum _{j,k=1}^d \int _0^s ( w-s/2)^2 |\ddot{\Theta }_k^j(\xi _k^j(w))| dw \\ \end{aligned}$$

where \(\Theta _k^j(t) = e^{i \beta ^-_j (s-t)} t g_{2,k}^n(t)\) and \(0< \xi _k^j(w) < w\). For derivatives, we get

$$\begin{aligned} {\dot{\Theta }}_k^j(t)&= i \beta ^-_j e^{i \beta ^-_j (s-t)} t g_{2,k}^n(t) + e^{i \beta ^-_j (s-t)} g_{2,k}^n(t) + e^{i \beta ^-_j (s-t)} t {\dot{g}}_{2,k}^n(t),\\ \ddot{\Theta }_k^j(t)&= -(\beta ^-_j)^2 e^{i \beta ^-_j (s-t)} t g_{2,k}^n(t) + e^{i \beta ^-_j (s-t)} t \ddot{g}_{2,k}^n(t)\\&\quad +2(i \beta ^-_j e^{i \beta ^-_j (s-t)} g_{2,k}^n(t)+ i \beta ^-_j e^{i \beta ^-_j (s-t)} t {\dot{g}}_{2,k}^n(t) + e^{i \beta ^-_j (s-t)} {\dot{g}}_{2,k}^n(t)), \end{aligned}$$

and \(\ddot{\Theta }_k^j(t) \lesssim 1\) for \(\forall 0 \le t \le \tau \) by the boundedness of \(g_{2,k}^n(t)\), \({\dot{g}}_{2,k}^n(t)\) and \(\ddot{g}_{2,k}^n(t)\). Thus,

$$\begin{aligned}&\left| \sum _{j,k=1}^d i\overline{u_{jl}} u_{jk} \gamma _j e^{\frac{i}{\varepsilon ^2}s} \left( \int _0^s e^{i \beta ^-_j (s-w)} w g_{1,k}^n(w) dw - e^{i \beta ^-_j s/2} \frac{s^2}{2} g_{1,k}^n(\frac{s}{2})\right) \right| \\&\quad \lesssim \sum _{j,k=1}^d \int _0^s ( w-s/2)^2 dw \lesssim s^3. \end{aligned}$$

Type 2. In view of the boundedness of \(\beta ^-_j\), \(g_{2,k}^n(t)\) and \({\dot{g}}_{2,k}^n(t)\), we derive that

$$\begin{aligned}&\left| \sum _{j,k=1}^d i\overline{u_{jl}} u_{jk} \gamma _j e^{\frac{i}{\varepsilon ^2}s} \left( \int _0^s e^{-\frac{i}{\varepsilon ^2}w} e^{-i \beta ^-_j (s-w)} p_1(w) g_{2,k}^n(w) dw - q_{-1,1}(s) g_{2,k}^n(0) \right) \right| \\&\quad \lesssim \sum _{j,k=1}^d \int _0^s |e^{-\frac{i}{\varepsilon ^2}w} p_1(w)| (|(e^{-i \beta ^-_j (s-w)}-1)g_{2,k}^n(w)|+|g_{2,k}^n(w)-g_{2,k}^n(0)|)dw \\&\quad \lesssim \sum _{j,k=1}^d \int _0^s w^2 \left( \left| i \beta ^-_j (s - w) e^{-i \beta ^-_j (s-\xi _{1}^j(w))}g_{2,k}^n(w)\right| + w|{\dot{g}}_{2,l}^n(\xi _{2,k}(w))|\right) dw \\&\quad \lesssim \int _0^s w^2 s\, dw \lesssim s^3, \end{aligned}$$

where \(0<\xi _{1}^j(w)<w, 0<\xi _{2,k}(w)<w\).

Type 3. We can obtain

$$\begin{aligned}&\bigg |\sum _{j,k=1}^d i\overline{u_{jl}} u_{jk} \gamma _j e^{\frac{i}{\varepsilon ^2}s} \bigg (\int _0^s e^{-\frac{i}{\varepsilon ^2}w} e^{-i \beta ^-_j (s-w)} g_{0,k}^n(w) dw \\&\qquad - e^{-i \beta ^-_j s} (p_{-1}(s) g_{0,k}^n(0) + q_{-1,0}(s) (i \beta ^-_l g_{0,k}^n(0) + {\dot{g}}_{0,k}^n(0)))\bigg )\bigg |\\&\quad \lesssim \sum _{j,k=1}^d |e^{-i \beta ^-_j s}| \int _0^s |e^{-\frac{i}{\varepsilon ^2}w}| \left| e^{i \beta ^-_j w}g_{0,k}^n(w)\right. \\&\left. \qquad - \left( g_{0,k}^n(0)+ w(i \beta ^-_j g_{0,k}^n(0) + {\dot{g}}_{0,k}^n(0))\right) \right| dw \\&\quad \le \sum _{j,k=1}^d \int _0^s w^2 \left| -(\beta ^-_j)^2 e^{i \beta ^-_j \xi _k^j(w)}g_{0,k}^n(\xi _k^j(w)) + i\beta ^-_j e^{i \beta ^-_j \xi _k^j(w)} {\dot{g}}_{0,k}^n(\xi _k^j(w)) \right. \\&\left. \qquad + e^{i \beta ^-_j \xi _k^j(w)}\ddot{g}_{0,k}^n(\xi _k^j(w))\right| dw\\&\quad \lesssim \int _0^s w^2 dw \lesssim s^3, \end{aligned}$$

where \(0<\xi _k^j(w)<w\) and we have used the boundedness of \(\beta ^-_j\), \(g_{2,k}^n(t)\), \({\dot{g}}_{2,k}^n(t)\) and \(\ddot{g}_{2,k}^n(t)\).

Therefore, combing all the three types of estimates, we have \(|Q_{2,l}^n(s)| \lesssim s^3, l =1,2,\ldots ,d\) and

$$\begin{aligned} | y_l(t_n +s) - y_l^{n,2}(s) |&\le |D_{2,l}^n(s)| + |Q_{2,l}^n(s)| +O(s^3)\lesssim s^3, \quad \forall 1\le l\le d, \end{aligned}$$

which leads to the estimates for local truncation error \(\varvec{\xi }^{n}\) follows:

$$\begin{aligned} |\xi ^{n+1}_l|&=|y_l(t_n +\tau ) - S_l(\varvec{y}(t_n),\dot{\varvec{y}}(t_n))|\\&= |y_l(t_n +\tau ) - y_l^{n,2}(\tau )| \lesssim \tau ^3, \quad \forall 1\le l\le d. \end{aligned}$$

For the truncation error \(\dot{\varvec{\xi }}^{n+1}\), we have similar estimates. Given first NPI approximation \(y^{n,1}(s)\), in view of \(|{\dot{\kappa }}_j(t)| = |i \beta _j^+ e^{\beta _j^+ t}- i \beta _j^- e^{\beta _j^- t}| \le |\beta _j^+| + |\beta _j^-| \lesssim \varepsilon ^{-2}\), we get

$$\begin{aligned}&|{\dot{y}}_l(t_n+s) - {\dot{y}}^{n,2}_{l}(s) |\\&\quad \le \sum _{j,k=1}^d |\overline{u_{jl}} u_{jk} \gamma _j|\int _{0}^{s} |{\dot{\kappa }}_j(s-w)| \left| |y^{n,1}_{k}(w)|^2 y^{n,1}_{k}(w)\right. \\&\left. \qquad - |y_k(t_n+w)|^2 y_k(t_n+w) \right| dw+|{\dot{R}}_{2,l}^n(s)|\\&\quad \le C \varepsilon ^{-2} \int _{0}^{s} L \Vert \varvec{y}(t_n+w)-\varvec{y}^{n,1}(s)\Vert _2 dw\\&\quad +|{\dot{R}}_{2,l}^n(s)|\le |{\dot{R}}_{2,l}^n(s)|+C\varepsilon ^{-2} s^3, \quad \forall 1\le l\le d, \end{aligned}$$

where the remainder function \(\dot{\varvec{R}}_{2}^n(s)=({\dot{R}}_{2,1}^n(s),\ldots ,{\dot{R}}_{2,d}^n(s))^T\) can be divided into two terms as \(\dot{\varvec{R}}_{2}^n(s) = \dot{\varvec{D}}_{2}^n(s) + \dot{\varvec{Q}}_{2}^n(s)\). \(\dot{\varvec{Q}}_{2}^n(s)\) includes the quadrature error of the integral approximation in (2.8) and \(\dot{\varvec{D}}_{2}^n(s)\) includes every discarded terms as

$$\begin{aligned} D_{2,l}^n(s)&= \sum _{j,k=1}^d i\overline{u_{jl}} u_{jk} \gamma _j \int _0^{s} {\dot{\kappa }}_j(s-w) \\&\quad \left( e^{3iw/\varepsilon ^2} \left( \sum _{m=1}^d f_{+,k,m}^n e^{-i \beta _m^- w}\right) \left( p_{-1}^2(w) |f_k^n|^2 \right) \right) dw \\&\quad +\sum _{j,k=1}^d i\overline{u_{jl}} u_{jk} \gamma _j \int _0^{s}{\dot{\kappa }}_j(s-w)\\&\quad \left( -e^{3iw/\varepsilon ^2}\left( \sum _{m=1}^d f_{+,k,m}^n e^{-i \beta _m^- w}\right) \left( p_{-1}(w) w|f_k^n|^2 \right) \right) dw \\&\quad +\sum _{j,k=1}^d i\overline{u_{jl}} u_{jk} \gamma _j \int _0^{s} {\dot{\kappa }}_j(s-w)\\&\quad \left( e^{2iw/\varepsilon ^2}\left( \sum _{m=1}^d f_{-,k,m}^n e^{i \beta _m^- w}\right) \left( p_{-1}^2(w) |f_k^n|^2 \right) \right) dw \\&\quad +\cdots , \end{aligned}$$

We estimate the first term, and other terms can be done analogously. By direct computation, we have

$$\begin{aligned}&\left| \sum _{j,k=1}^d i\overline{u_{jl}} u_{jk} \gamma _j \int _0^{s} {\dot{\kappa }}_j(s-w) \left( e^{3iw/\varepsilon ^2} (\sum _{m=1}^d f_{+,k,m}^n e^{-i \beta _m^- w}) \left( p_{-1}^2(w) |f_k^n|^2 \right) \right) dw\right| \\&\quad \le C \varepsilon ^{-2} \int _0^{s} \sum _{m=1}^d \left( |y_m(t_n)| + \varepsilon ^2|{\dot{y}}_m(t_n)|\right) \left( \sum _{k=1}^d w^2 |y_k^n|^6 \right) dw \lesssim \varepsilon ^{-2} \int _0^{s} w^2 dw \lesssim \varepsilon ^{-2} s^3. \end{aligned}$$

Thus, \({\dot{D}}_{2,l}^n(s) \lesssim \varepsilon ^{-2} s^3,\, l =1,2,\ldots , d\). For \(\dot{\varvec{Q}}_2^n(s)\), we know

$$\begin{aligned} {\dot{Q}}_{2,l}^n(s)&= \sum _{j,k=1}^d i\overline{u_{jl}} u_{jk} \gamma _j e^{\frac{i}{\varepsilon ^2}s} \left( i \beta _j^- \int _0^s e^{i \beta ^-_j (s-w)} w g_{1,k}^n(w) dw - i \beta _j^- e^{i \beta ^-_j s/2} \frac{s^2}{2} g_{1,k}^n(\frac{s}{2})\right) \\&\quad +\cdots (\text {error of other type 1 error terms})\\&\quad +\sum _{j,k=1}^d i\overline{u_{jl}} u_{jk} \gamma _j e^{\frac{i}{\varepsilon ^2}s} \left( i \beta _j^+ \int _0^s e^{-\frac{i}{\varepsilon ^2}w} e^{-i \beta ^-_j (s-w)} p_1(w) g_{2,k}^n(w) dw\right. \\&\left. \quad - i \beta _j^+ q_{-1,1}(s) g_{2,k}^n(0) \right) \\&\quad +\cdots (\text {error of other type 2 error terms})\\&\quad +\sum _{j,k=1}^d i\overline{u_{jl}} u_{jk} \gamma _j e^{\frac{i}{\varepsilon ^2}s} \bigg (i \beta _j^+ \int _0^s e^{-\frac{i}{\varepsilon ^2}w} e^{-i \beta ^-_j (s-w)} g_{0,k}^n(w) dw \\&\quad - i \beta _j^+ e^{-i \beta ^-_j s} (p_{-1}(s) g_{0,k}^n(0) + q_{-1,0}(s) (i \beta ^-_l g_{0,k}^n(0) + {\dot{g}}_{0,k}^n(0)))\bigg )\\&\quad +\cdots (\text {error of other type 3 error terms}). \end{aligned}$$

As \(\beta ^+_j =-\beta ^-_j +\varepsilon ^{-2} \lesssim \varepsilon ^{-2}\) and \(\beta _l^- \lesssim 1 \lesssim \varepsilon ^{-2} \), it is easy to prove \({\dot{Q}}_{2,l}^n(s) \lesssim \varepsilon ^{-2} s^3,\, l =1,2,\ldots , d\) by the same method for estimating \(Q_{2,l}^n(s)\).

Now the local truncation error \(\dot{\varvec{\xi }}^{n}\) has the following estimates:

$$\begin{aligned} |{\dot{\xi }}^{n}_l|&=|{\dot{y}}_l(t_n +\tau ) - {\dot{S}}_l(\varvec{y}(t_n),\dot{\varvec{y}}(t_n))|= |{\dot{y}}_l(t_n +\tau ) - {\dot{y}}_l^{n,2}(\tau )| \\&\quad \le |{\dot{D}}_{2,l}^n(\tau )| + |{\dot{Q}}_{2,l}^n(\tau )| +C\tau ^3/\varepsilon ^2 \lesssim \varepsilon ^{-2} \tau ^3, \quad \forall 1\le l\le d. \end{aligned}$$

The proof of Lemma 3.1 is complete.

Appendix C: proof of Lemma 3.2

From (2.5) and (3.3), it is easy to find that

$$\begin{aligned} U\varvec{S}_{L}(\varvec{y},\dot{\varvec{y}})=&\beta ^{-1}(e^{i\beta ^-\tau }\beta ^+-e^{i\beta ^+\tau }\beta ^-) U\varvec{y}+i\beta ^{-1}(e^{i\beta ^-\tau }-e^{i\beta ^+\tau })\Lambda ^{-1} \Lambda U\dot{\varvec{y}}, \end{aligned}$$
(C.1)
$$\begin{aligned} \Lambda U\dot{\varvec{S}}_{L}(\varvec{y},\dot{\varvec{y}})=&\beta ^{-1}\Lambda ^{-1}(-ie^{i\beta ^-\tau }+ie^{i\beta ^+\tau })U\varvec{y}-\beta ^{-1}(e^{i\beta ^-\tau }\beta ^--e^{i\beta ^+\tau }\beta ^+)\Lambda U\dot{\varvec{y}}. \end{aligned}$$
(C.2)

By direct computation, it is easy to verify that Q is unitary. As \(\varvec{S}_L\) and \(\dot{\varvec{S}}_L\) are linear in \(\varvec{y}\) and \(\dot{\varvec{y}}\), we conclude that

$$\begin{aligned} \begin{bmatrix} U\varvec{S}(\varvec{y}^0,\dot{\varvec{y}}^0)-U\varvec{S}(\varvec{y}^1,\dot{\varvec{y}}^1)\\ \Lambda U\dot{\varvec{S}}(\varvec{y}^0,\dot{\varvec{y}}^0)-\Lambda U\varvec{S}(\varvec{y}^1,\dot{\varvec{y}}^1) \end{bmatrix} =Q\begin{bmatrix} U(\varvec{y}^0-\varvec{y}^1)\\ \Lambda U(\dot{\varvec{y}}^0-\dot{\varvec{y}}^1) \end{bmatrix}. \end{aligned}$$
(C.3)

The properties of Q and \(Q^k\) can be verified by direct computation and the fact that \(\beta _l^+=O(1/\varepsilon ^2), \beta _l^-=O(1)\).

For the nonlinear parts, we obtain the component-wise forms of \(U \varvec{S}_{NL}\) and \(\Lambda U \dot{\varvec{S}}_{NL}\) as (\(j=1,\ldots ,d\))

$$\begin{aligned} \begin{aligned} (US_{NL})_j(\varvec{y}, \dot{\varvec{y}})&:= \sum _{k=1}^d i u_{jk} \gamma _j(G_{+,0,k}(\varvec{y},\dot{\varvec{y}};\tau ) + e^{-i \beta ^-_j \tau /2} G_{+,1,k}(\varvec{y},\dot{\varvec{y}};\tau ) \\&\quad + e^{-i \beta ^-_j \tau } G_{+,2,k}(\varvec{y},\dot{\varvec{y}};\tau ) + i \beta ^-_j e^{-i \beta ^-_j \tau } G_{+,3,k}(\varvec{y},\dot{\varvec{y}};\tau ) \\&\quad + G_{-,0,k}(\varvec{y},\dot{\varvec{y}};\tau ) \\&\quad + e^{i \beta ^-_j \tau /2} G_{-,1,k}(\varvec{y},\dot{\varvec{y}};\tau ) + e^{i \beta ^-_j \tau } G_{-,2,k}(\varvec{y},\dot{\varvec{y}};\tau )\\&\quad - i \beta ^-_j e^{i \beta ^-_j \tau } G_{-,3,k}(\varvec{y},\dot{\varvec{y}};\tau )),\\ (\Lambda U \dot{\varvec{S}}_{NL})_j(\varvec{y}, \dot{\varvec{y}})&:= -\sum _{k=1}^d u_{jk} \gamma _j(-\beta _j^-\beta _j^+)^{-1/2}((\beta ^+_j (G_{+,0,k}(\varvec{y},\dot{\varvec{y}};\tau ) \\&\quad + e^{-i \beta ^-_j \tau /2} G_{+,1,k}(\varvec{y},\dot{\varvec{y}};\tau )\\&\quad + e^{-i \beta ^-_j \tau } G_{+,2,k}(\varvec{y},\dot{\varvec{y}};\tau ) + i \beta ^-_j e^{-i \beta ^-_j \tau } G_{+,3,k}(\varvec{y},\dot{\varvec{y}};\tau ))\\&\quad +\beta _j^- (G_{-,0,k}(\varvec{y},\dot{\varvec{y}};\tau ) \\&\quad + e^{i \beta ^-_j \tau /2} G_{-,1,k}(\varvec{y},\dot{\varvec{y}};\tau ) + e^{i \beta ^-_j \tau } G_{-,2,k}(\varvec{y},\dot{\varvec{y}};\tau ) \\&\quad - i \beta ^-_j e^{i \beta ^-_j \tau } G_{-,3,k}(\varvec{y},\dot{\varvec{y}};\tau ))). \end{aligned} \end{aligned}$$
(C.4)

Now, we estimate \((U\varvec{S}_{NL})_l(\varvec{y}^0,\dot{\varvec{y}}^0)-(U\varvec{S}_{NL})_l(\varvec{y}^1,\dot{\varvec{y}}^1)\) (\(l=1,\ldots ,d\)). Since \(|u_{jk}| \le 1\), \(|\gamma _l|=\frac{1}{\varepsilon ^2\beta _l^+} \le 1\), \(|\beta _l^-| \le \rho (A)\) for \(\forall j,k,l=1,2,\ldots ,d\), we only need to consider \(G_{+,j,k}(\varvec{y}^0,\dot{\varvec{y}}^0;\tau )-G_{+,j,k}(\varvec{y}^1,\dot{\varvec{y}}^1;\tau ), j=0,1,2,3\), and the estimates fall into the following three types in view of the definitions of \(G_{\pm ,j,k}\) in (A.3).

Type 1. Terms containing \(g_{k,l}(\cdot ;0)\), for example \(e^{is/\varepsilon ^2}q_{-1,0}(\tau )(g_{1,l}^0(0)- g_{1,l}^{1}(0))\), where \(g_{1,l}^{0}(s)=g_{1,l}(\varvec{y}^0,\dot{\varvec{y}}^0;s), g_{1,l}^{1}(s)=g_{1,l}(\varvec{y}^1,\dot{\varvec{y}}^1;s)\). Then we can estimate the difference by:

$$\begin{aligned}&e^{is/\varepsilon ^2}q_{-1,0}(\tau )(g_{0,l}^0(0)- g_{0,l}^{1}(0)) \\&\quad = -e^{is/\varepsilon ^2}q_{-1,0}(\tau ) \left( \left( \sum _{j=1}^d \overline{f^0_{+,l,j}}\right) \left( \sum _{j=1}^d f^0_{-,l,j}\right) \left( \sum _{j=1}^d f^0_{+,l,j}\right) \right. \\&\qquad - \left( \sum _{j=1}^d \overline{f^{1}_{+,l,j}}\right) \left( \sum _{j=1}^d f^{1}_{-,l,j}\right) \left( \sum _{j=1}^d f^{1}_{+,l,j}\right) \\&\qquad + \left( \sum _{j=1}^d f^0_{+,l,j}\right) \left( \sum _{j=1}^d \overline{f^0_{+,l,j}}\right) \left( \sum _{j=1}^d f^0_{-,l,j}\right) \\&\left. \qquad - \left( \sum _{j=1}^d f^{1}_{+,l,j}\right) \left( \sum _{j=1}^d \overline{f^{1}_{+,l,j}}\right) \left( \sum _{j=1}^d f^{1}_{-,l,j}\right) +\cdots \right) , \end{aligned}$$

where \(f_{\pm ,l,j}^{m}=f_{\pm ,l,j}(\varvec{y}^m,\dot{\varvec{y}}^m)\) (\(m=0,1\)) are given in (2.13), and some terms with similar structure are omitted for brevity. \(\forall j,k,l,m = 1,2,\ldots ,d\), there holds

$$\begin{aligned}&|\overline{f_{+,l,j}^0} f_{-,l,k}^0 f_{+,l,m}^0-\overline{f_{+,l,j}^{1}} f_{-,l,k}^{1} f_{+,l,m}^{1}|\\&\quad \le |\overline{f_{+,l,j}^0} - \overline{f_{+,l,j}^{1}}| |f_{-,l,k}^0 f_{+,l,m}^0| \\&\qquad + |\overline{f_{+,l,j}^{1}}| \big (|f_{-,l,k}^0-f_{-,l,k}^{1}||f_{+,l,m}^0|-|f_{-,l,k}^{1}||f_{+,l,m}^0-f_{+,l,m}^{1}|\big ). \end{aligned}$$

Under the hypothesis of the lemma where \(\Vert \varvec{y}^0\Vert _{\infty } +\varepsilon ^2 \Vert \dot{\varvec{y}}^0\Vert _{\infty } \le M+1\) (\(m=0,1\)), from (2.11), we know for

$$\begin{aligned} |h_{-,j}^{k}(\varvec{y}^0,\dot{\varvec{y}}^0)|&\le \frac{\beta ^+_j}{\beta _j}|y^0_k| + \frac{1}{\beta _j} |{\dot{y}}^0_k| \le (|y^0_k| + \varepsilon ^2 |{\dot{y}}^0_k|) \le M+1. \end{aligned}$$

Analogously \(|h_{\pm ,j}^{k} (\varvec{y}^m,\dot{\varvec{y}}^m))| \le M+1\) (\(m=0,1, j,k=1,\ldots ,d\)), and by the unitary property of U and (2.13), \(|f_{\pm ,l,j}^m| \lesssim 1\) for \(m=1,2,\) and \(l,j =1,2,\ldots ,d\). In addition, we have

$$\begin{aligned} |h_{-,j}^{k}(\varvec{y}^0,\dot{\varvec{y}}^0)-h_{-,j}^{k}(\varvec{y}^1,\dot{\varvec{y}}^1)|&\le \frac{\beta ^+_j}{\beta _j}| y_k^0-y^1_k| + \frac{1}{\beta _j} |{\dot{y}}^0_k-{\dot{y}}_k^1|\nonumber \\&\le \Vert \varvec{y}^0-\varvec{y}^1\Vert _2+\varepsilon ^2\Vert \dot{\varvec{y}}^0-\dot{\varvec{y}}^1\Vert _2. \end{aligned}$$
(C.5)

Recalling \(|q_{-1,0}(\tau )| \lesssim \tau ^2\), we derive from (C.5) that

$$\begin{aligned}&|e^{is/\varepsilon ^2}q_{-1,0}(\tau )(g_{0,l}^0(0)- g_{0,l}^{1}(0))| \\&\quad \le |q_{-1,0}(\tau )| \left( |\left( \sum _{j=1}^d \overline{f^0_{+,l,j}}\right) \left( \sum _{j=1}^d f^0_{-,l,j}\right) \left( \sum _{j=1}^d f^0_{+,l,j}\right) \nonumber \right. \\&\left. \qquad - \left( \sum _{j=1}^d \overline{f^{1}_{+,l,j}}\right) \left( \sum _{j=1}^d f^{1}_{-,l,j}\right) \left( \sum _{j=1}^d f^{1}_{+,l,j}\right) | +\ldots \right) ,\\&\quad \lesssim \tau ( \Vert \varvec{y}^0-\varvec{y}^1\Vert _2+\varepsilon ^2\Vert \dot{\varvec{y}}^0-\dot{\varvec{y}}^1\Vert _2). \end{aligned}$$

Type 2. Terms containing \(g_{k,l}(\tau /2)\), for example \(e^{is/\varepsilon ^2}\tau (g_{7,l}^n(\tau /2)- g_{7,l}^{[n]}(\tau /2))\). By definition, we have

$$\begin{aligned}&e^{is/\varepsilon ^2}\tau (g_{7,l}^0(\tau /2)- g_{7,l}^{1}(\tau /2))\\&\quad = e^{is/\varepsilon ^2} \tau \left( \left( \sum _{j=1}^d f^0_{+,l,j} e^{-i \beta _j^- \tau /2}\right) \left( \sum _{j=1}^d \overline{f^0_{+,l,j}} e^{i \beta _j^- \tau /2}\right) \left( \sum _{j=1}^d f^0_{+,l,j} e^{-i \beta _j^- \tau /2}\right) \right. \\&\qquad - \left( \sum _{j=1}^d f^{1}_{+,l,j} e^{-i \beta _j^- \tau /2}\right) \left( \sum _{j=1}^d \overline{f^{1}_{+,l,j}} e^{i \beta _j^- \tau /2}\right) \left( \sum _{j=1}^d f^{1}_{+,l,j} e^{-i \beta _j^- \tau /2}\right) \\&\qquad + \left( \sum _{j=1}^d f^0_{-,l,j} e^{i \beta _j^- \tau /2}\right) \left( \sum _{j=1}^d \overline{f^0_{-,l,j}} e^{-i \beta _j^- \tau /2}\right) \left( \sum _{j=1}^d f^0_{+,l,j} e^{-i \beta _j^- \tau /2}\right) \\&\left. \qquad -\left( \sum _{j=1}^d f^{1}_{-,l,j} e^{i \beta _j^- \tau /2}\right) \left( \sum _{j=1}^d \overline{f^{1}_{-,l,j}} e^{-i \beta _j^- \tau /2}\right) \left( \sum _{j=1}^d f^{1}_{+,l,j} e^{-i \beta _j^- \tau /2}\right) +\cdots \right) . \end{aligned}$$

Then \(\forall j,k,l,m = 1,2,\ldots ,d\), there holds

$$\begin{aligned}&|f_{+,l,j}^0 e^{-i \beta _j^- \tau /2} \overline{f_{+,l,k}^0} e^{i \beta _k^- \tau /2} f_{+,l,m}^0 e^{-i \beta _m^- \tau /2}\\&\qquad -f_{+,l,j}^{1} e^{-i \beta _j^- \tau /2} \overline{f_{+,l,k}^{1}} e^{i \beta _k^- \tau /2} f_{+,l,m}^{1} e^{-i \beta _m^- \tau /2}| \\&\quad \le |f_{+,l,j}^0 \overline{f_{+,l,k}^0} f_{+,l,m}^0-f_{+,l,j}^{1} \overline{f_{+,l,k}^{1}} f_{+,l,m}^{1}| \lesssim \Vert \varvec{y}^0-\varvec{y}^1\Vert _2+\varepsilon ^2\Vert \dot{\varvec{y}}^0-\dot{\varvec{y}}^1\Vert _2. \end{aligned}$$

where the last inequality can be derived by the same arguments for type 1 terms. Thus, we can get

$$\begin{aligned} |e^{is/\varepsilon ^2}\tau (g_{7,l}^n(\tau /2)- g_{7,l}^{[n]}(\tau /2))| \lesssim \tau (\Vert \varvec{y}^0-\varvec{y}^1\Vert _2+\varepsilon ^2\Vert \dot{\varvec{y}}^0-\dot{\varvec{y}}^1\Vert _2). \end{aligned}$$

Type 3. Terms containing \({\dot{g}}_{k,l}(0)\), for example \(e^{is/\varepsilon ^2}q_{-1,0}(\tau )({\dot{g}}_{0,l}^0(0)- {\dot{g}}_{0,l}^{1}(0))\). For \(l=1,\ldots ,d\), we know

$$\begin{aligned}&e^{is/\varepsilon ^2}q_{-1,0}(\tau )({\dot{g}}_{0,l}^0(0)- {\dot{g}}_{0,l}^{1}(0))\\&\quad = e^{is/\varepsilon ^2}q_{-1,0}(\tau ) \left( \left( \sum _{j=1}^d -i\beta _j^- f^0_{+,l,j} \right) \left( \sum _{j=1}^d \overline{f^0_{+,l,j}} \right) \left( \sum _{j=1}^d f^0_{+,l,j} \right) \right. \\&\qquad - \left( \sum _{j=1}^d -i\beta _j^- f^{1}_{+,l,j} \right) \left( \sum _{j=1}^d \overline{f^{1}_{+,l,j}} \right) \left( \sum _{j=1}^d f^{1}_{+,l,j}\right) \\&\qquad + \left( \sum _{j=1}^d i\beta _j^- f^0_{-,l,j} \right) \left( \sum _{j=1}^d \overline{f^0_{-,l,j}} \right) \left( \sum _{j=1}^d f^0_{+,l,j} \right) \\&\left. \qquad - \left( \sum _{j=1}^d i\beta _j^- f^{1}_{-,l,j} \right) \left( \sum _{j=1}^d \overline{f^{1}_{-,l,j}} \right) \left( \sum _{j=1}^d f^{1}_{+,l,j}\right) +\cdots \right) . \end{aligned}$$

Noticing the boundedness of \(\beta _j^-\) (independent of \(\varepsilon \)), by the same arguments for type 1 terms, we have for \( j,k,l,m = 1,2,\ldots ,d\),

$$\begin{aligned}&|-i \beta _j^- f_{+,l,j}^0 \overline{f_{+,l,k}^0} f_{+,l,m}^0 + i \beta _j^- f_{+,l,j}^{1} \overline{f_{+,l,k}^{1}} f_{+,l,m}^{1} | \le \Vert \varvec{y}^0-\varvec{y}^1\Vert _2+\varepsilon ^2\Vert \dot{\varvec{y}}^0-\dot{\varvec{y}}^1\Vert _2. \end{aligned}$$

Therefore, in view of the fact \(|q_{-1,0}(\tau )|\lesssim \tau ^2\), we obtain

$$\begin{aligned} |e^{is/\varepsilon ^2}&q_{-1,0}(\tau )({\dot{g}}_{0,l}^0(0)- {\dot{g}}_{0,l}^{1}(0))|&\lesssim \tau ^2 (\Vert \varvec{y}^0-\varvec{y}^1\Vert _2+\varepsilon ^2\Vert \dot{\varvec{y}}^0-\dot{\varvec{y}}^1\Vert _2)\\&\lesssim \tau (\Vert \varvec{y}^0-\varvec{y}^1\Vert _2+\varepsilon ^2\Vert \dot{\varvec{y}}^0-\dot{\varvec{y}}^1\Vert _2). \end{aligned}$$

Combining all the three cases above, we can prove the estimates for the nonlinear part \(U\varvec{S}_{NL}\) as

$$\begin{aligned}&\Vert U\varvec{S}_{NL}(\varvec{y}^0,\dot{\varvec{y}}^0)- U\varvec{S}_{NL}(\varvec{y}^1,\dot{\varvec{y}}^1)\Vert _2 \\&\quad \lesssim \tau (\Vert \varvec{y}^0-\varvec{y}^1\Vert _2+\varepsilon ^2\Vert \dot{\varvec{y}}^0-\dot{\varvec{y}}^1\Vert _2). \end{aligned}$$

For the nonlinear part of \(\Lambda U\dot{\varvec{S}}\) in (C.4), noticing all terms appearing in \(\Lambda U\dot{\varvec{S}}\) differ from corresponding terms in \(U\varvec{S}\) by a factor \(i\frac{\beta _j^+}{\sqrt{-\beta _l^+ \beta _l^-}}\) or \(i\frac{\beta _j^-}{\sqrt{-\beta _l^+ \beta _l^-}}\), \(l,j=1,2,\ldots ,d\), recalling the coefficients \(\beta _j^\pm \) (2.3),

$$\begin{aligned} |\beta _j^+|/ \sqrt{-\beta _l^+ \beta _l^-} \lesssim \frac{1}{\varepsilon },\quad |\beta _j^-|/ \sqrt{-\beta _l^+ \beta _l^-} \lesssim 1,\quad j=1,\ldots ,d, \end{aligned}$$

we have

$$\begin{aligned} \Vert U\dot{\varvec{S}}_{NL}(\varvec{y}^0,\dot{\varvec{y}}^0)- U\dot{\varvec{S}}_{NL}(\varvec{y}^1,\dot{\varvec{y}}^1)\Vert _2 \lesssim \frac{\tau }{\varepsilon } \left( \Vert \varvec{y}^0-\varvec{y}^1\Vert _2+\varepsilon ^2\Vert \dot{\varvec{y}}^0-\dot{\varvec{y}}^1\Vert _2\right) . \end{aligned}$$

Setting \(\varvec{\eta }= U\varvec{S}_{NL}(\varvec{y}^0,\dot{\varvec{y}}^0)- U\varvec{S}_{NL}(\varvec{y}^1,\dot{\varvec{y}}^1) \) and \( \dot{\varvec{\eta }}=U\dot{\varvec{S}}_{NL}(\varvec{y}^0,\dot{\varvec{y}}^0)- U\dot{\varvec{S}}_{NL}(\varvec{y}^1,\dot{\varvec{y}}^1)\), combining (C.3), we draw the conclusions in Lemma 3.2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Guo, Y. Uniformly accurate nested Picard integrators for a system of oscillatory ordinary differential equations. Bit Numer Math 61, 1115–1152 (2021). https://doi.org/10.1007/s10543-021-00862-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00862-3

Keywords

Mathematics Subject Classification

Navigation