Skip to main content
Log in

Applicability ranges for four approaches to determination of bending stiffness of multilayer plates

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A linear static problem of bending of a multilayer plate with homogeneous isotropic layers is considered. The deflection is assumed to have harmonic shape in the tangential directions. For calculation of the bending stiffness we introduce two dimensionless parameters: a small thickness parameter equal to the ratio of the thickness to the deformation wavelength in the tangential directions, and a large inhomogeneity parameter equal to the ratio of the maximum and minimum Young’s moduli of the layers. The plane of these parameters is split into four regions, in which different models are available for calculating the bending stiffness. The first of these is the Kirchhoff - Love model based on the hypothesis of straight non-deformable normal. In the second region, the Timoshenko - Reissner model with a shear parameter is used, calculated by an asymptotic formula of the second order of accuracy. The third region is based on assumptions on inextensible normal fiber and large heterogeneity. Finally, in the fourth region, compression of the normal is taken into account, and an approximate formula for bending stiffness is proposed for a three-layer plate. Error estimation of the models is carried out on test examples by comparison with the exact numerical solution of the three-dimensional problem of the elasticity theory. The possibility of suitability of the bending stiffness for calculating the plate eigenfrequencies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mikhasev, G.I., Altenbach, H.: Thin-walled laminated structures. vibrations, and their suppression. Springer, Buckling (2019)

    Book  Google Scholar 

  2. Altenbach, H.: Theories for laminated and sandwich plates. Mech. compos. mat. 34, 243–252 (1998)

    Article  Google Scholar 

  3. Altenbach, H.: On the determination of transverse shear stiffnesses of orthotropic plates. Zeitschrift für angewandte Mathematik und Physik ZAMP 51(4), 629–649 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  4. Altenbach, H., Eremeyev, V.A., Naumenko, K.: On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer. ZAMM, J. App Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 95(10), 1004–1011 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. Altenbach, H., Eremeyev, V.: Thin-Walled Structural Elements: Classification, Classical and Advanced Theories, New Applications. In: Altenbach, H., Eremeyev, V. (eds.) Shell-like Structures. CISM International Centre for Mechanical Sciences (Courses and Lectures), vol 572. Springer, Cham. https://doi.org/10.1007/978-3-319-42277-0_1 (2017)

  6. Aßmus, M., Naumenko, K., Öchsner, A., Eremeyev, V.A., Altenbach, H.: A generalized framework towards structural mechanics of three-layered composite structures. Technische Mechanik. Sci. J. Fundam. Appl. Eng. Mech. 39(2), 202–219 (2019)

    Google Scholar 

  7. Kirchhoff, G.: Vorlesungen über Matematische Physik. Mechanik, Leipzig (1876). [in German]

    MATH  Google Scholar 

  8. Love, A.E.H.: A treatise on the mathematical theory of elasticity. Cambridge Univ, Press (1927)

    MATH  Google Scholar 

  9. Timoshenko, S.P.: LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. London, Edinburgh, Dublin Philos. J. Sci. 41(245), 744–746 (1921). https://doi.org/10.1080/14786442108636264

  10. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. Trans. ASME, J. Appl. Mech. 12, 69–77 (1945)

  11. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965). https://doi.org/10.1016/0022-5096(65)90010-4

  12. Grigolyuk, E.I., Kulikov, G.M.: Multilayer Reinforced Shells: Calculation of Pneumatic Tires. Mashinostroenie, Moscow (1988). [in Russian]

    Google Scholar 

  13. Grigolyuk, E.I., Kulikov, G.M.: Generalized model of mechanics of thin-walled structures made of composite materials. Mech. compos. mater. 4, 698–704 (1988). [in Russian]

    Google Scholar 

  14. Berdichevsky, V.L.: An asymptotic theory of sandwich plates. Int. J. Eng. Sci. (2009). https://doi.org/10.1016/j.ij.engsci.2009.09.001

    Article  MATH  Google Scholar 

  15. Kienzler, R., Schneider, P.: Comparison of various linear plate theories in the light of a consistent second order approximation. Shell Structures: Theory and Applications. Proceedings on 10th SSTA 2013 Conference. 3, 109–112 (2014)

  16. Vetyukov, Y., Kuzin, A., Krommer, M.: Asymptotic splitting in the three-dimensional problem of elasticity for non-homogeneous piezoelectric plates. Int. J. Solids Struct. 48, 12–23 (2011)

    Article  Google Scholar 

  17. Tovstik, P.E., Tovstik, T.P.: A thin-plate bending equation of second-order accuracy. Doklady Phys. 59(8), 389–392 (2014)

    Article  ADS  Google Scholar 

  18. Reddy, J.N.: Mechanics of laminated composite plates and shells. CRC, London (2004)

    Book  Google Scholar 

  19. Vekua, I.N.: On one method of calculating prismatic shells. Trudy Tbilis. Mat. Inst. 21, 191–259 (1955). [in Russian]

    MathSciNet  Google Scholar 

  20. Chernykh, K.F., Rodionova, V.A., Titaev, B.F.: Applied theory of anisotropic plates and shells. St.Petersburg Univ, Press (1996). [in Russian]

    Google Scholar 

  21. Eremeev, V.A., Zubov, L.M.: Mechanics of elastic shells. Nauka, Moscow (2008). [in Russian]

    Google Scholar 

  22. Altenbach, H., Mikhasev, G.I. (eds.): Shell and membrane theories in mechanics and biology. Springer, Berlin (2014)

    Google Scholar 

  23. Tovstik, P.E., Tovstik, T.P.: Generalized Timoshenko-Reissner models for beams and plates, strongly heterogeneous in the thickness direction. ZAMM 97(3), 296–308 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Tovstik, P.E., Tovstik, T.P.: An elastic plate bending equation of second-order accuracy. Acta Mech. 228(10), 3403–3419 (2017)

    Article  MathSciNet  Google Scholar 

  25. Tovstik, P.E.: Two-dimensional model of second-order Accuracy for an anisotropic plate. Vestnik St. Petersburg Univ. Math. 52(1), 112–121 (2019)

    Article  MathSciNet  Google Scholar 

  26. Belyaev, A.K., Morozov, N.F., Tovstik, P.E., Tovstik, T.P., Zelinskaya, A.V.: Two-dimensional model of plate made of material with general anisotropy. In: Recent Developments in the Theory of Shells (STRUCTMAT, 110 (2019)

  27. Morozov, N.F., Belyaev, A.K., Tovstik, P.E., Tovstik, T.P.: Two-dimensional equations of second order accuracy for a multilayered plate with orthotropic layers. Doklady Phys. 63(11), 471–475 (2018)

    Article  ADS  Google Scholar 

  28. Belyaev, A.K., Morozov, N.F., Tovstik, P.E., Tovstik, T.P.: Two-dimensional linear model of multilayered anisotropic plate. Acta Mech. 230, 2891–2904 (2019)

    Article  MathSciNet  Google Scholar 

  29. Kaplunov, J.D., Prikazchikov, D.A., Prikazchikova, L.A.: Dispersion of elastic waves in a strongly inhomogeneous three-layered plate. Int. J. Solids Struct. 113–114, 169–179 (2017)

    Article  Google Scholar 

  30. Morozov, N.F., Tovstik, P.E., Tovstik, T.P.: Bending vibrations of multilayered plates. Doclady Phys. 65(8), 17–21 (2020)

    Google Scholar 

  31. Morozov, N.F., Tovstik, P.E., Tovstik, T.P.: Flexural rigidity of multilayer plates. Mech. Solids 55(5), 607–611 (2020)

    Article  ADS  Google Scholar 

  32. Naumenko, K., Eremeyev, V.A.: A layer-wise theory for laminated glass and photovoltaic panels. Composite Struct. 112, 283–291 (2014)

    Article  Google Scholar 

  33. Eremeyev, V.A., Wiczenbach, T.: On effective bending stiffness of a laminate nanoplate considering Steigmann-Ogden surface elasticity. Appl. Sci. 10(21), 7402 (2020)

    Article  Google Scholar 

  34. Ustinov, U.A.: Mathematical theory of transversely heterogeneous plates. CVVR, Rostov-on-Don (2006)

    Google Scholar 

Download references

Acknowledgements

Support of Russian Foundation for Basic Research is acknowledged, projects 18-01-00884a, 19-01-00208a, 20-51-S52001 MHT-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana P. Tovstik.

Additional information

Communicated by Marcus Aßmus, Victor A. Eremeyev and Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, N.F., Belyaev, A.K., Tovstik, P.E. et al. Applicability ranges for four approaches to determination of bending stiffness of multilayer plates. Continuum Mech. Thermodyn. 33, 1659–1673 (2021). https://doi.org/10.1007/s00161-021-00996-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-00996-3

Keywords

Navigation