Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heinrich Stadial aridity forced Mediterranean-wide glacier retreat in the last cold stage

Abstract

Throughout the last cold stage, the North Atlantic region was punctuated by abrupt climate shifts and atmospheric processes propagated their effects to adjacent continents. During Heinrich Stadials, the ocean was chilled by icebergs calved from the great ice sheets. The impact of multiple temperature and precipitation regime changes on Late Pleistocene mountain glaciers and landscape development is poorly understood. Here we analyse 1,118 cosmogenic exposure ages—spanning the last 100,000 years—from glacial landforms on three continents across the Mediterranean. We evaluate their geomorphological context and stratify the record by depositional setting and geographical region. The database includes 300 dated moraines. We show that, despite cold temperatures, Heinrich Stadial aridity caused negative glacier mass balance and repeatedly stalled glacier growth across the Mediterranean. In contrast, relatively warm and humid climates between Heinrich Stadials favoured positive glacier mass balance, resulting in region-wide glacier growth and moraine formation. Our analysis supports climate model simulations of repeated and widespread Heinrich Stadial aridity in the Mediterranean basin during the last cold stage. Heinrich Stadials also saw enhanced supply of coarse debris from valley sides. The cumulative geomorphological impact of these climate shifts saw the largest moraines form at the culmination of the glacial cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cosmogenic exposure ages for glacial landforms across the Mediterranean.
Fig. 2: The location of dated glacial records and long proxy climate records in the Mediterranean.
Fig. 3: Mediterranean glacial and Northern Hemisphere proxy climate records for the past 100,000 yr.

Similar content being viewed by others

Data availability

The TCN database on which this paper is based is provided in full in Supplementary Table 1. Basemap data were downloaded from https://earthexplorer.usgs.gov/.

References

  1. Hughes, P. D. & Woodward, J. C. (eds) Quaternary Glaciation in the Mediterranean Mountains Geological Society Special Publication Vol. 433 (Geological Society of London, 2017).

  2. Allen, J. R. M. et al. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, 740–743 (1999).

    Article  Google Scholar 

  3. Sánchez Goñi, M. F., Turon, J.-L., Eynaud, F. & Gendreau, S. European climatic response to millennial-scale changes in the atmosphere–ocean system during the last glacial period. Quat. Res. 54, 394–403 (2000).

    Article  Google Scholar 

  4. Tzedakis, P. C. et al. Ecological thresholds and patterns of millennial-scale climate variability: the response of vegetation in Greece during the last glacial period. Geology 32, 109–112 (2004).

    Article  Google Scholar 

  5. Fletcher, W. J. & Sánchez Goñi, M. F. Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean Basin over the last 48,000 yr. Quat. Res. 70, 451–464 (2008).

    Article  Google Scholar 

  6. Sánchez Goñi, M. F. et al. Muted cooling and drying of NW Mediterranean in response to the strongest last glacial North American ice surges. Geol. Soc. Am. Bull. https://doi.org/10.1130/B35736.1 (2020).

  7. Bartov, Y., Goldstein, S. L. & Stein, M. Catastrophic arid episodes in the eastern Mediterranean linked with the North Atlantic Heinrich Events. Geology 31, 439–442 (2003).

    Article  Google Scholar 

  8. Torfstein, A., Goldstein, S. L., Stein, M. & Enzel, Y. Impacts of abrupt climate changes in the Levant from last glacial Dead Sea levels. Quat. Sci. Rev. 69, 1–7 (2013).

    Article  Google Scholar 

  9. Sánchez Goñi, M. F. & Harrison, S. P. Millennial-scale climate variability and vegetation changes during the last glacial: concepts and terminology. Quat. Sci. Rev. 29, 2823–2827 (2010).

    Article  Google Scholar 

  10. Seierstad, I. K. et al. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich Event imprint. Quat. Sci. Rev. 106, 29–46 (2014).

    Article  Google Scholar 

  11. Woodward, J. C. The Physical Geography of the Mediterranean (Oxford Univ. Press, 2009).

  12. Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).

    Article  Google Scholar 

  13. Oliva, M. et al. Spatial and temporal variability of periglaciation of the Iberian Peninsula. Quat. Sci. Rev. 137, 176–199 (2016).

    Article  Google Scholar 

  14. Fletcher, W. J. et al. Millennial-scale variability during the last glacial in vegetation records from Europe. Quat. Sci. Rev. 29, 2839–2864 (2010).

    Article  Google Scholar 

  15. Macklin, M. G. et al. Correlation of fluvial sequences in the Mediterranean Basin over the last 200ka and their relationship to climate change. Quat. Sci. Rev. 21, 1633–1641 (2002).

    Article  Google Scholar 

  16. Cacho, I. et al. Dansgaard–Oeschger and Heinrich Event imprints in Alboran Sea paleotemperatures. Paleoceanography 14, 698–705 (1999).

    Article  Google Scholar 

  17. Fleitmann, D. et al. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys. Res. Lett. 36, L19707 (2009).

    Article  Google Scholar 

  18. McManus, J. F., Oppo, D. W. & Cullen, J. L. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283, 971–975 (1999).

    Article  Google Scholar 

  19. Heinrich, H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quat. Res. 29, 142–152 (1988).

    Article  Google Scholar 

  20. Bond, G. et al. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143–147 (1993).

    Article  Google Scholar 

  21. Allard, J. L. et al. Late Pleistocene glaciers in Greece: a new 36Cl chronology. Quat. Sci. Rev. 245, 106528 (2020).

    Article  Google Scholar 

  22. Hughes, P. D., Woodward, J. C. & Gibbard, P. L. Late Pleistocene glaciers and climate in the Mediterranean. Glob. Planet. Change 50, 83–98 (2006).

    Article  Google Scholar 

  23. Oliva, M. et al. Late quaternary glacial phases in the Iberian Peninsula. Earth Sci. Rev. 192, 564–600 (2019).

    Article  Google Scholar 

  24. Grunewald, K. & Scheithauer, J. Europe’s southernmost glaciers: response and adaptation to climate change. J. Glaciol. 56, 129–142 (2010).

    Article  Google Scholar 

  25. Sánchez Goñi, M. F. et al. Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region. Clim. Dyn. 19, 95–105 (2002).

    Article  Google Scholar 

  26. Ziemen, F., Kapsch, M.-L., Klockmann, M. & Mikolajewicz, U. Heinrich events show two-stage climate response in transient glacial simulations. Clim. Past https://doi.org/10.5194/CP-15-153-2019 (2019).

  27. Ludwig, P., Shao, Y., Kehl, M. & Weniger, G.-C. The Last Glacial Maximum and Heinrich Event I on the Iberian Peninsula: a regional climate modelling study for understanding human settlement patterns. Glob. Planet. Change 170, 34–47 (2018).

    Article  Google Scholar 

  28. Gwiazda, R. H., Hemming, S. R. & Broecker, W. S. Provenance of icebergs during Heinrich Event 3 and the contrast to their sources during other Heinrich episodes. Paleoceanography 11, 371–378 (1996).

    Article  Google Scholar 

  29. Hughes, P. D. & Gibbard, P. L. A stratigraphical basis for the Last Glacial Maximum (LGM). Quat. Int. 383, 174–185 (2015).

    Article  Google Scholar 

  30. Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

    Article  Google Scholar 

  31. Alley, R. B., Brook, E. J. & Anandakrishnan, S. A northern lead in the orbital band: north–south phasing of Ice-Age events. Quat. Sci. Rev. 21, 431–441 (2002).

    Article  Google Scholar 

  32. Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714 (2009).

    Article  Google Scholar 

  33. Clark, P. U., McCabe, A. M., Mix, A. C. & Weaver, A. J. Rapid rise of sea level 19,000 years ago and its global implications. Science 304, 1141–1144 (2004).

    Article  Google Scholar 

  34. Ohmura, A., Kasser, P. & Funk, M. Climate at the equilibrium line of glaciers. J. Glaciol. 38, 397–411 (1992).

    Article  Google Scholar 

  35. Pfeffer, W. T., Sassolas, C., Bahr, D. B. & Meier, M. F. Response time of glaciers as a function of size and mass balance: 2. Numerical experiments. J. Geophys. Res. Solid Earth 103, 9783–9789 (1998).

    Article  Google Scholar 

  36. Rea, B. R. et al. Atmospheric circulation over Europe during the Younger Dryas. Sci. Adv. 6, eaba4844 (2020).

    Article  Google Scholar 

  37. Denton, G. H., Broecker, W. S. & Alley, R. B. The mystery interval 17.5 to 14.5 kyrs ago. PAGES News https://doi.org/10.22498/pages.14.2.14 (2006).

  38. Palacios, D., Andrés, N., de, Gómez-Ortiz, A. & García-Ruiz, J. M. in Quaternary Glaciation in the Mediterranean Mountains Geological Society Special Publication Vol. 433 (eds Hughes, P. D. & Woodward, J. C.) 87–110 (Geological Society of London, 2017).

  39. Ballantyne, C. K. Paraglacial geomorphology. Quat. Sci. Rev. 21, 1935–2017 (2002).

    Article  Google Scholar 

  40. Hughes, P. D., Gibbard, P. L. & Woodward, J. C. Relict rock glaciers as indicators of Mediterranean palaeoclimate during the Last Glacial Maximum (Late Würmian) in Northwest Greece. J. Quat. Sci. 18, 431–440 (2003).

    Article  Google Scholar 

  41. Gómez-Ortiz, A., Palacios, D., Palade, B., Vázquez-Selem, L. & Salvador-Franch, F. The deglaciation of the Sierra Nevada (Southern Spain). Geomorphology 159–160, 93–105 (2012).

    Article  Google Scholar 

  42. Broecker, W. S. Massive iceberg discharges as triggers for global climate change. Nature 372, 421–424 (1994).

    Article  Google Scholar 

  43. Bard, E., Rostek, F., Turon, J. L. & Gendreau, S. Hydrological impact of Heinrich Events in the subtropical Northeast Atlantic. Science 289, 1321–1324 (2000).

    Article  Google Scholar 

  44. Henry, L. G. et al. North Atlantic Ocean circulation and abrupt climate change during the last glaciation. Science 353, 470–474 (2016).

    Article  Google Scholar 

  45. Barker, S. et al. Icebergs not the trigger for North Atlantic cold events. Nature 520, 333–336 (2015).

    Article  Google Scholar 

  46. Eynaud, F. et al. Position of the Polar Front along the western Iberian margin during key cold episodes of the last 45 ka. Geochem. Geophys. Geosyst. 10, Q07U05 (2009).

    Article  Google Scholar 

  47. Nebout, N. C. et al. Enhanced aridity and atmospheric high-pressure stability over the western Mediterranean during the North Atlantic cold events of the past 50 k.y. Geology 30, 863–866 (2002).

    Article  Google Scholar 

  48. Kwiecien, O. et al. North Atlantic control on precipitation pattern in the eastern Mediterranean/Black Sea region during the last glacial. Quat. Res. 71, 375–384 (2009).

    Article  Google Scholar 

  49. Bout-Roumazeilles, V. et al. Connection between South Mediterranean climate and North African atmospheric circulation during the last 50,000 yr bp North Atlantic cold events. Quat. Sci. Rev. 26, 3197–3215 (2007).

    Article  Google Scholar 

  50. Martinez-Lamas, R. et al. Linking Danube River activity to Alpine Ice-Sheet fluctuations during the last glacial (ca. 33–17 ka bp): insights into the continental signature of Heinrich Stadials. Quat. Sci. Rev. 229, 106136 (2020).

    Article  Google Scholar 

  51. Oliva, M. et al. Permafrost conditions in the Mediterranean region since the last glaciation. Earth Sci. Rev. 185, 397–436 (2018).

    Article  Google Scholar 

  52. Courty, M.-A. & Vallverdu, J. The microstratigraphic record of abrupt climate changes in cave sediments of the western Mediterranean. Geoarchaeology 16, 467–499 (2001).

    Article  Google Scholar 

  53. Lewis, C. J., McDonald, E. V., Sancho, C., Peña, J. L. & Rhodes, E. J. Climatic implications of correlated Upper Pleistocene glacial and fluvial deposits on the Cinca and Gállego rivers (NE Spain) based on OSL dating and soil stratigraphy. Glob. Planet. Change 67, 141–152 (2009).

    Article  Google Scholar 

  54. Woodward, J. C., Hamlin, R. H. B., Macklin, M. G., Hughes, P. D. & Lewin, J. Glacial activity and catchment dynamics in northwest Greece: long-term river behaviour and the slackwater sediment record for the last glacial to interglacial transition. Geomorphology 101, 44–67 (2008).

    Article  Google Scholar 

  55. Macklin, M. G. & Woodward, J. C. in The Physical Geography of the Mediterranean (ed. Woodward, J. C.) 319–352 (Oxford Univ. Press, 2009).

  56. Woodward, J. C., Hamlin, R. H. B., Macklin, M. G., Karkanas, P. & Kotjabopoulou, E. Quantitative sourcing of slackwater deposits at Boila rockshelter: a record of lateglacial flooding and Paleolithic settlement in the Pindus Mountains, Northwest Greece. Geoarchaeology 16, 501–536 (2001).

    Article  Google Scholar 

  57. McManus, J. F. et al. High-resolution climate records from the North Atlantic during the last interglacial. Nature 371, 326–329 (1994).

    Article  Google Scholar 

  58. Sánchez Goñi, M. F., Bard, E., Landais, A., Rossignol, L. & d’Errico, F. Air–sea temperature decoupling in western Europe during the last interglacial–glacial transition. Nat. Geosci. 6, 837–841 (2013).

    Article  Google Scholar 

  59. Hodell, D. A., Channell, J. E. T., Curtis, J. H., Romero, O. E. & Röhl, U. Onset of ‘Hudson Strait’ Heinrich Events in the eastern North Atlantic at the end of the middle Pleistocene transition (640 ka)? Paleoceanography 23, PA4218 (2008).

    Article  Google Scholar 

  60. Tzedakis, P. C., McManus, J. F., Hooghiemstra, H., Oppo, D. W. & Wijmstra, T. A. Comparison of changes in vegetation in northeast Greece with records of climate variability on orbital and suborbital frequencies over the last 450 000 years. Earth Planet. Sci. Lett. 212, 197–212 (2003).

    Article  Google Scholar 

  61. Hughes, P. D., Woodward, J. C. & Gibbard, P. L. Middle Pleistocene cold stage climates in the Mediterranean: new evidence from the glacial record. Earth Planet. Sci. Lett. 253, 50–56 (2007).

    Article  Google Scholar 

  62. Akçar, N. et al. Paleoglacial records from Kavron Valley, NE Turkey: field and cosmogenic exposure dating evidence. Quat. Int. 164–165, 170–183 (2007).

    Article  Google Scholar 

  63. Akçar, N. et al. A case for a downwasting mountain glacier during Termination I, Verçenik Valley, northeastern Turkey. J. Quat. Sci. 23, 273–285 (2008).

    Article  Google Scholar 

  64. Akçar, N. et al. Glacier response to the change in atmospheric circulation in the eastern Mediterranean during the Last Glacial Maximum. Quat. Geochronol. 19, 27–41 (2014).

    Article  Google Scholar 

  65. Akçar, N. et al. in Quaternary Glaciation in the Mediterranean Mountains Geological Society Special Publication Vol. 433 (eds Hughes, P. D. & Woodward, J. C.) 251–269 (Geological Society of London, 2017).

  66. Andrés, N. et al. Timing of deglaciation and rock glacier origin in the southeastern Pyrenees: a review and new data. Boreas 47, 1050–1071 (2018).

    Article  Google Scholar 

  67. Baroni, C., Guidobaldi, G., Salvatore, M. C., Christl, M. & Ivy-Ochs, S. Last Glacial Maximum glaciers in the Northern Apennines reflect primarily the influence of southerly storm-tracks in the western Mediterranean. Quat. Sci. Rev. 197, 352–367 (2018).

    Article  Google Scholar 

  68. Carrasco, R. M., Pedraza, J., Domínguez-Villar, D., Villa, J. & Willenbring, J. K. The plateau glacier in the Sierra de Béjar (Iberian Central System) during its maximum extent. Reconstruction and chronology. Geomorphology 196, 83–93 (2013).

    Article  Google Scholar 

  69. Carrasco, R. M., Pedraza, J., Domínguez-Villar, D., Willenbring, J. K. & Villa, J. Sequence and chronology of the Cuerpo de Hombre paleoglacier (Iberian Central System) during the last glacial cycle. Quat. Sci. Rev. 129, 163–177 (2015).

    Article  Google Scholar 

  70. Çiner, A. & Sarıkaya, M. A. in Quaternary Glaciation in the Mediterranean Mountains Geological Society Special Publication Vol. 433 (eds Hughes, P. D. & Woodward, J. C.) 271–287 (Geological Society of London, 2017).

  71. Çiner, A., Sarıkaya, M. A. & Yıldırım, C. Late Pleistocene piedmont glaciations in the eastern Mediterranean; insights from cosmogenic 36Cl dating of hummocky moraines in southern Turkey. Quat. Sci. Rev. 116, 44–56 (2015).

    Article  Google Scholar 

  72. Çiner, A., Sarıkaya, M. A. & Yıldırım, C. Misleading old age on a young landform? The dilemma of cosmogenic inheritance in surface exposure dating: moraines vs. rock glaciers. Quat. Geochronol. 42, 76–88 (2017).

    Article  Google Scholar 

  73. Çiner, A., Stepišnik, U., Sarikaya, M. A., Žebre, M. & Yıldirim, C. Last Glacial Maximum and Younger Dryas piedmont glaciations in Blidinje, the Dinaric Mountains (Bosnia and Herzegovina): insights from 36Cl cosmogenic dating. Medit. Geosci. Rev. 1, 25–43 (2019).

    Article  Google Scholar 

  74. Crest, Y., Delmas, M., Braucher, R., Gunnell, Y. & Calvet, M. Cirques have growth spurts during deglacial and interglacial periods: evidence from 10Be and 26Al nuclide inventories in the central and eastern Pyrenees. Geomorphology 278, 60–77 (2017).

    Article  Google Scholar 

  75. Dede, V., Çiçek, İ., Sarıkaya, M. A., Çiner, A. & Uncu, L. First cosmogenic geochronology from the Lesser Caucasus: Late Pleistocene glaciation and rock glacier development in the Karçal Valley, NE Turkey. Quat. Sci. Rev. 164, 54–67 (2017).

    Article  Google Scholar 

  76. Delmas, M., Calvet, M., Gunnell, Y., Braucher, R. & Bourlès, D. Palaeogeography and 10Be exposure-age chronology of Middle and Late Pleistocene glacier systems in the northern Pyrenees: implications for reconstructing regional palaeoclimates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 305, 109–122 (2011).

    Article  Google Scholar 

  77. Delmas, M., Gunnell, Y., Braucher, R., Calvet, M. & Bourlès, D. Exposure age chronology of the last glaciation in the eastern Pyrenees. Quat. Res. 69, 231–241 (2008).

    Article  Google Scholar 

  78. Domínguez-Villar, D. et al. Early maximum extent of paleoglaciers from Mediterranean mountains during the last glaciation. Sci. Rep. 3, 2034 (2013).

    Article  Google Scholar 

  79. Federici, P. R. et al. Exposure age dating and equilibrium line altitude reconstruction of an Egesen moraine in the Maritime Alps, Italy. Boreas 37, 245–253 (2008).

    Article  Google Scholar 

  80. Federici, P. R. et al. Last Glacial Maximum and the Gschnitz Stadial in the Maritime Alps according to 10Be cosmogenic dating. Boreas 41, 277–291 (2012).

    Article  Google Scholar 

  81. Fernandez Mosquera, D., Marti, K., Romani, J. R. V. & Weigel, A. Late Pleistocene deglaciation chronology in the NW of the Iberian Peninsula using cosmic-ray produced 21Ne in quartz. Nucl. Instrum. Methods Phys. Res. Sect. B 172, 832–837 (2000).

    Article  Google Scholar 

  82. Fernández-Fernández, J. M. et al. Chronological and geomorphological investigation of fossil debris-covered glaciers in relation to deglaciation processes: a case study in the Sierra de La Demanda, northern Spain. Quat. Sci. Rev. 170, 232–249 (2017).

    Article  Google Scholar 

  83. Gromig, R. et al. Evidence for a Younger Dryas deglaciation in the Galicica Mountains (FYROM) from cosmogenic 36Cl. Quat. Int. 464, 352–363 (2018).

    Article  Google Scholar 

  84. Hughes, P. D., Fink, D., Fletcher, W. J. & Hannah, G. Catastrophic rock avalanches in a glaciated valley of the High Atlas, Morocco: 10Be exposure ages reveal a 4.5 ka seismic event. Geol. Soc. Am. Bull. 126, 1093–1104 (2014).

    Article  Google Scholar 

  85. Hughes, P. D., Fink, D., Rodés, Á., Fenton, C. R. & Fujioka, T. Timing of Pleistocene glaciations in the High Atlas, Morocco: new 10Be and 36Cl exposure ages. Quat. Sci. Rev. 180, 193–213 (2018).

    Article  Google Scholar 

  86. Köse, O., Sarıkaya, M. A., Çİner, A. & Candaş, A. Late Quaternary glaciations and cosmogenic 36Cl geochronology of Mount Dedegöl, south-west Turkey. J. Quat. Sci. 34, 51–63 (2019).

    Article  Google Scholar 

  87. Kuhlemann, J. et al. Regional synthesis of Mediterranean atmospheric circulation during the Last Glacial Maximum. Science 321, 1338–1340 (2008).

    Article  Google Scholar 

  88. Kuhlemann, J. et al. Last Glacial Maximum glaciation of the Central South Carpathian Range (Romania). Austrian J. Earth Sci. 106, 83–95 (2013).

    Google Scholar 

  89. Kuhlemann, J. et al. Glaciation in the Rila Mountains (Bulgaria) during the Last Glacial Maximum. Quat. Int. 293, 51–62 (2013).

    Article  Google Scholar 

  90. Manz, L. A. Cosmogenic 36Cl chronology for deposits of presumed Pleistocene age on the Eastern Piedmont of Mount Olympus, Pieria, Greece. MSc thesis, Ohio Univ. (1998).

  91. Palacios, D., Andrés, N., Marcos, J. & Vázquez-Selem, L. Maximum glacial advance and deglaciation of the Pinar Valley (Sierra de Gredos, Central Spain) and its significance in the Mediterranean context. Geomorphology 177–178, 51–61 (2012).

    Article  Google Scholar 

  92. Palacios, D., de Andrés, N., de Marcos, J. & Vázquez-Selem, L. Glacial landforms and their paleoclimatic significance in Sierra de Guadarrama, central Iberian Peninsula. Geomorphology 139–140, 67–78 (2012).

    Article  Google Scholar 

  93. Palacios, D., de Andrés, N., López-Moreno, J. I. & García-Ruiz, J. M. Late Pleistocene deglaciation in the upper Gállego Valley, central Pyrenees. Quat. Res. 83, 397–414 (2015).

    Article  Google Scholar 

  94. Palacios, D., de Marcos, J. & Vázquez-Selem, L. Last Glacial Maximum and deglaciation of Sierra de Gredos, central Iberian Peninsula. Quat. Int. 233, 16–26 (2011).

    Article  Google Scholar 

  95. Palacios, D. et al. Deglaciation in the central Pyrenees during the Pleistocene–Holocene transition: timing and geomorphological significance. Quat. Sci. Rev. 162, 111–127 (2017).

    Article  Google Scholar 

  96. Palacios, D. et al. The challenging application of cosmogenic dating methods in residual glacial landforms: the case of Sierra Nevada (Spain). Geomorphology 325, 103–118 (2019).

    Article  Google Scholar 

  97. Palacios, D. et al. Maximum extent of Late Pleistocene glaciers and last deglaciation of La Cerdanya mountains, southeastern Pyrenees. Geomorphology 231, 116–129 (2015).

    Article  Google Scholar 

  98. Palacios, D., Gómez-Ortiz, A., Andrés, N., Salvador, F. & Oliva, M. Timing and new geomorphologic evidence of the last deglaciation stages in Sierra Nevada (southern Spain). Quat. Sci. Rev. 150, 110–129 (2016).

    Article  Google Scholar 

  99. Pallàs, R. et al. Late Pleistocene and Holocene glaciation in the Pyrenees: a critical review and new evidence from 10Be exposure ages, south-central Pyrenees. Quat. Sci. Rev. 25, 2937–2963 (2006).

    Article  Google Scholar 

  100. Pallàs, R. et al. Small, isolated glacial catchments as priority targets for cosmogenic surface exposure dating of Pleistocene climate fluctuations, southeastern Pyrenees. Geology 38, 891–894 (2010).

    Article  Google Scholar 

  101. Pellitero, R., Fernández‐Fernández, J. M., Campos, N., Serrano, E. & Pisabarro, A. Late Pleistocene climate of the northern Iberian Peninsula: new insights from palaeoglaciers at Fuentes Carrionas (Cantabrian Mountains). J. Quat. Sci. 34, 342–354 (2019).

    Article  Google Scholar 

  102. Pope, R. J., Hughes, P. D. & Skourtsos, E. in Quaternary Glaciation in the Mediterranean Mountains Geological Society Special Publication Vol. 433 (eds Hughes, P. D. & Woodward, J. C.) 211–236 (Geological Society of London, 2017).

  103. Reber, R. et al. Glacier advances in northeastern Turkey before and during the global Last Glacial Maximum. Quat. Sci. Rev. 101, 177–192 (2014).

    Article  Google Scholar 

  104. Ribolini, A. et al. An Oldest Dryas glacier expansion on Mount Pelister (Former Yugoslavian Republic of Macedonia) according to 10Be cosmogenic dating. J. Geol. Soc. 175, 100–110 (2018).

    Article  Google Scholar 

  105. Rodríguez-Rodríguez, L. et al. Constraining the age of superimposed glacial records in mountain environments with multiple dating methods (Cantabrian Mountains, Iberian Peninsula). Quat. Sci. Rev. 195, 215–231 (2018).

    Article  Google Scholar 

  106. Rodríguez-Rodríguez, L. et al. A multiple dating-method approach applied to the Sanabria Lake moraine complex (NW Iberian Peninsula, SW Europe). Quat. Sci. Rev. 83, 1–10 (2014).

    Article  Google Scholar 

  107. Rodríguez-Rodríguez, L. et al. Chronology of glaciations in the Cantabrian Mountains (NW Iberia) during the last glacial cycle based on in situ-produced 10Be. Quat. Sci. Rev. 138, 31–48 (2016).

    Article  Google Scholar 

  108. Rodríguez-Rodríguez, L. et al. Timing of last deglaciation in the Cantabrian Mountains (Iberian Peninsula; North Atlantic Region) based on in situ-produced 10Be exposure dating. Quat. Sci. Rev. 171, 166–181 (2017).

    Article  Google Scholar 

  109. Sarıkaya, M. A. & Çiner, A. in Quaternary Glaciation in the Mediterranean Mountains Geological Society Special Publication Vol. 433 (eds Hughes, P. D. & Woodward, J. C.) 289–305 (Geological Society of London, 2017).

  110. Sarıkaya, M. A., Çiner, A., Haybat, H. & Zreda, M. An early advance of glaciers on Mount Akdağ, SW Turkey, before the global Last Glacial Maximum; insights from cosmogenic nuclides and glacier modeling. Quat. Sci. Rev. 88, 96–109 (2014).

    Article  Google Scholar 

  111. Sarıkaya, M. A., Çiner, A. & Yıldırım, C. Cosmogenic 36Cl glacial chronologies of the Late Quaternary glaciers on Mount Geyikdağ in the eastern Mediterranean. Quat. Geochronol. 39, 189–204 (2017).

    Article  Google Scholar 

  112. Sarıkaya, M. A., Zreda, M., Çiner, A. & Zweck, C. Cold and wet Last Glacial Maximum on Mount Sandıras, SW Turkey, inferred from cosmogenic dating and glacier modeling. Quat. Sci. Rev. 27, 769–780 (2008).

    Article  Google Scholar 

  113. Sarıkaya, M. A., Zreda, M. & Çiner, A. Glaciations and paleoclimate of Mount Erciyes, central Turkey, since the Last Glacial Maximum, inferred from 36Cl cosmogenic dating and glacier modeling. Quat. Sci. Rev. 28, 2326–2341 (2009).

    Article  Google Scholar 

  114. Styllas, M. N. et al. Late-glacial and Holocene history of the northeast Mediterranean mountain glaciers—new insights from in situ-produced 36Cl-based cosmic ray exposure dating of paleo-glacier deposits on Mount Olympus, Greece. Quat. Sci. Rev. 193, 244–265 (2018).

    Article  Google Scholar 

  115. Vidal-Romani, J. R., Mosquera, D. & Marti, K. The glaciation of Serra de Queixa-Invernadoiro and Serra do Gerês-Xurés, NW Iberia. A critical review and a cosmogenic nuclide (10Be and 21Ne) chronology. Cuad. Lab. Xeoloxico Laxe 38, 25–44 (2015).

    Article  Google Scholar 

  116. Zahno, C., Akçar, N., Yavuz, V., Kubik, P. W. & Schlüchter, C. Chronology of Late Pleistocene glacier variations at the Uludağ Mountain, NW Turkey. Quat. Sci. Rev. 29, 1173–1187 (2010).

    Article  Google Scholar 

  117. Zahno, C., Akçar, N., Yavuz, V., Kubik, P. W. & Schlüchter, C. Surface exposure dating of Late Pleistocene glaciations at the Dedegöl Mountains (Lake Beyşehir, SW Turkey). J. Quat. Sci. 24, 1016–1028 (2009).

    Article  Google Scholar 

  118. Žebre, M., Sarıkaya, M. A., Stepišnik, U., Yıldırım, C. & Çiner, A. First 36Cl cosmogenic moraine geochronology of the Dinaric mountain karst: Velež and Crvanj mountains of Bosnia and Herzegovina. Quat. Sci. Rev. 208, 54–75 (2019).

    Article  Google Scholar 

  119. Zreda, M., Çiner, A., Sarıkaya, M. A., Zweck, C. & Bayarı, S. Remarkably extensive glaciation and fast deglaciation and climate change in Turkey near the Pleistocene–Holocene boundary. Geology 39, 1051–1054 (2011).

    Article  Google Scholar 

  120. Marrero, S. M. et al. Cosmogenic nuclide systematics and the CRONUScalc program. Quat. Geochronol. 31, 160–187 (2016).

    Article  Google Scholar 

  121. Marrero, S. M., Phillips, F. M., Caffee, M. W. & Gosse, J. C. CRONUS-Earth cosmogenic 36Cl calibration. Quat. Geochronol. 31, 199–219 (2016).

    Article  Google Scholar 

  122. Balco, G., Stone, J. O., Lifton, N. A. & Dunai, T. J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat. Geochronol. 3, 174–195 (2008).

    Article  Google Scholar 

  123. Putkonen, J. & Swanson, T. Accuracy of cosmogenic ages for moraines. Quat. Res. 59, 255–261 (2003).

    Article  Google Scholar 

  124. Heyman, J., Stroeven, A. P., Harbor, J. M. & Caffee, M. W. Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth Planet. Sci. Lett. 302, 71–80 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

During this work, J.L.A. was in receipt of a School of Environment Education and Development (SEED) PhD Studentship in the Department of Geography at The University of Manchester.

Author information

Authors and Affiliations

Authors

Contributions

J.L.A., P.D.H. and J.C.W.: manuscript conceptualization, methodology, writing original draft, writing review and editing; J.L.A.: data curation and analysis. All authors reviewed and edited the drafts of the paper.

Corresponding authors

Correspondence to James L. Allard, Philip D. Hughes or Jamie C. Woodward.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Maria-Fernanda Sanchez-Goñi, Patrick Ludwig and Marc Oliva for their contribution to the peer review of this work. Primary Handling Editor: James Super.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Trends of publications and published TCN dates over time.

Cumulative frequency plot of (a) publications presenting cosmogenic nuclide exposure ages for Mediterranean glaciated landscapes and (b) the total number of cosmogenic ages (0–100 ka). Continuous lines represent reliable ages that exclude author identified outliers. Dashed lines represent total ages and include author identified outliers. The data here are compiled from published sources in the database62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119 (Supplementary Table 1). Note that some publications in the database use both isotopes.

Supplementary information

41561_2021_703_MOESM1_ESM.xls

Supplementary Information Supplementary Table 1 This spreadsheet contains all 1,118 recalculated terrestrial cosmogenic nuclide (TCN) ages from the Mediterranean Mountains included in this analysis. This spreadsheet also contains details of the 300 moraines included in this analysis and the TCN data required for exposure age calculations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allard, J.L., Hughes, P.D. & Woodward, J.C. Heinrich Stadial aridity forced Mediterranean-wide glacier retreat in the last cold stage. Nat. Geosci. 14, 197–205 (2021). https://doi.org/10.1038/s41561-021-00703-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00703-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing