Skip to main content
Log in

Effect of humidity on the static angle in granular systems

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The purpose of the present work is to study the influence of humidity effect on the static angle for single particles with diverse sizes on surfaces with differing roughness. The aim is to provide information about the characteristics of cohesive forces between grains and rough surfaces with different grain geometries. The study has an experimental part and it is complemented by Monte Carlo simulations (MCS) and an empirical formulation of the dependence of the critical angle on two important parameters of the problem. The experimental device consists of an inclined surface that allows studying the evolution of the static angle (Ɵs), that is, the angle at which a 50% percent of spheres are put in motion. Relative Humidity (RH) is controlled through hygroscopic salts saturated solutions. Values ​​obtained at different humidity rates are compared. For the MCS, the balance of the moments applied to the particle and necessary for its destabilization are taken into account as a basis for calculating the probabilities for movement. Simulations help to establish a fitting curve that is able to describe the complete set of results by correlating the fitting parameters with the surface roughness and the Bond number for the particles. We determine that for systems with high humidity, the formation of liquid bridges between particles affects the static angle for the onset of movement and this angle decrease as the diameter of the spheres increases. The type of surface has an important role on the static angle values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Richard, P., Nicodemi, M., Delannay, R., Ribière, P., Bideau, D.: Slow relaxation and compaction of granular systems. Nat. Mater. 4, 121–128 (2005). https://doi.org/10.1038/nmat1300

    Article  ADS  Google Scholar 

  2. Goujon, C., Thomas, N., Dalloz-Dubrujeaud, B.: Monodisperse dry granular flows on inclined planes: Role of roughness. Eur. Phys. J. E. 11, 147–157 (2003). https://doi.org/10.1140/epje/i2003-10012-0

    Article  Google Scholar 

  3. Delannay, R., Valance, A., Mangeney, A., Roche, O., Richard, P.: Granular and particle-laden flows: From laboratory experiments to field observations. J. Phys. D. Appl. Phys. 50, 0533001 (2017). https://doi.org/10.1088/1361-6463/50/5/053001

    Article  Google Scholar 

  4. Russell, A.S., Johnson, C.G., Edwards, A.N., Viroulet, S., Rocha, F.M., Gray, J.M.N.T.: Retrogressive failure of a static granular layer on an inclined plane. J. Fluid Mech. 869, 313–340 (2019). https://doi.org/10.1017/jfm.2019.215

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Restagno, F., Bocquet, L., Charlaix, E.: Where does a cohesive granular heap break? Eur. Phys. J. E. 14, 177–183 (2004). https://doi.org/10.1140/epje/i2004-10013-5

    Article  Google Scholar 

  6. Bocquet, L., Charlaix, E., Ciliberto, S., Crassous, J.: Moisture-induced ageing in granular media and the kinetics of capillary condensation. Nature 396, 735–737 (1998). https://doi.org/10.1038/25492

    Article  ADS  Google Scholar 

  7. Samadani, A., Kudrolli, A.: Angle of repose and segregation in cohesive granular matter. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 64, 9 (2001). https://doi.org/10.1103/PhysRevE.64.051301

  8. Fraysse, N., Thomé, H., Petit, L.: Humidity effects on the stability of a sandpile. Eur. Phys. J. B. 11, 615–619 (1999)

    Article  ADS  Google Scholar 

  9. Mason, T.G., Levine, A.J., Ertaş, D., Halsey, T.C.: Critical angle of wet sandpiles. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 60, R5044–R5047 (1999). https://doi.org/10.1103/PhysRevE.60.R5044

  10. Aguirre, M.A., Nerone, N., Calvo, A., Ippolito, I., Bideau, D.: Influence of the number of layers on the equilibrium of a granular packing. Phys. Rev. E. 62, 738–743 (2000). https://doi.org/10.1103/PhysRevE.62.738

    Article  ADS  Google Scholar 

  11. Albert, R., Albert, I., Hornbaker, D., Schiffer, P., Barabási, A.L.: Maximum angle of stability in wet and dry spherical granular media. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 56, R6271–R6274 (1997). https://doi.org/10.1103/PhysRevE.56.R6271

  12. Gómez-Arriaran, I., Ippolito, I., Chertcoff, R., Odriozola-Maritorena, M., De Schant, R.: Characterization of wet granular avalanches in controlled relative humidity conditions. Powder Technol. 279, 24–32 (2015). https://doi.org/10.1016/j.powtec.2015.03.050

    Article  Google Scholar 

  13. Greenspan, L.: Humidity fixed points of binary satured aqueous solutions. J. Res. Bur. Stand. -A. Phys. Chem. 81 A, 89–96 (1977)

  14. Oger, L., el Tannoury, Claude Delannay, R., Le Gonidec, Y., Ippolito, I., Roht, Y.L., Gómez-Arriaran, I.: Dynamic behavior of humid granular avalanches: Optical measurements to characterize the precursor activity. Phys. Rev. E. 101, 1–12 (2020). https://doi.org/10.1103/PhysRevE.101.022902

  15. Butt, H.J., Kappl, M.: Normal capillary forces. Adv. Colloid Interface Sci. 146, 48–60 (2009). https://doi.org/10.1016/j.cis.2008.10.002

    Article  Google Scholar 

  16. Bocquet, L., Charlaix, É., Restagno, F.: Physics of humid granular media. Comptes Rendus Phys. 3, 207–215 (2002). https://doi.org/10.1016/S1631-0705(02)01312-9

    Article  ADS  Google Scholar 

  17. Wei, J.: A Metropolis scheme for Monte Carlo methods for the solution of particle population balance. J. Aerosol Sci. 90, 51–62 (2015). https://doi.org/10.1016/j.jaerosci.2015.08.007

    Article  ADS  Google Scholar 

  18. Butt, H.J.: Capillary forces: Influence of roughness and heterogeneity. Langmuir 24, 4715–4721 (2008). https://doi.org/10.1021/la703640f

    Article  Google Scholar 

  19. Bohme, G., Krupp, H., Rabenhorst, H., Sandstede, G.: Adhesion measurements involving small particles. Trans. Inst. Chem. Eng. 40, 252–259 (1962)

    Google Scholar 

  20. Reeks, M.W., Reed, J., Hall, D.: On the resuspension of small particles by a turbulent flow. J. Phys. D. Appl. Phys. 21, 574–589 (1988). https://doi.org/10.1088/0022-3727/21/4/006

    Article  ADS  Google Scholar 

  21. Matsusaka, S., Aoyagi, T., Masuda, H.: Unsteady particle-reentrainment model based on the internal adhesive strength distribution of a fine powder layer. Kagaku Kogaku Ronbunshu 17, 1194–1200 (1991)

    Article  Google Scholar 

  22. Taheri, M., Bragg, G.M.: A study of particle resuspension in a turbulent flow using a preston tube. Aerosol Sci. Technol. 16, 15–20 (1992). https://doi.org/10.1080/02786829208959534

    Article  ADS  Google Scholar 

  23. Reeks, M.W., Hall, D.: Kinetic models for particle resuspension in turbulent flows: Theory and measurement. J. Aerosol Sci. 32, 1–31 (2001). https://doi.org/10.1016/S0021-8502(00)00063-X

    Article  ADS  Google Scholar 

  24. Salazar-Banda, G.R., Felicetti, M.A., Gonçalves, J.A.S., Coury, J.R., Aguiar, M.L.: Determination of the adhesion force between particles and a flat surface, using the centrifuge technique. Powder Technol. 173, 107–117 (2007). https://doi.org/10.1016/j.powtec.2006.12.011

    Article  Google Scholar 

  25. Zhang, F., Reeks, M., Kissane, M.: Particle resuspension in turbulent boundary layers and the influence of non-Gaussian removal forces. J. Aerosol Sci. 58, 103–128 (2013). https://doi.org/10.1016/j.jaerosci.2012.11.009

    Article  ADS  Google Scholar 

  26. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. London. A. Math. Phys. Sci. 324, 301–313 (1971). https://doi.org/10.1098/rspa.1971.0141

    Article  ADS  Google Scholar 

  27. Tabor, D.: Surface forces and surface interactions. J. Colloid Interface Sci. 58, 2–13 (1977). https://doi.org/10.1016/0021-9797(77)90366-6

    Article  ADS  Google Scholar 

  28. Maugis, D.: Adhesion of spheres: The JKR-DMT transition using a dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992). https://doi.org/10.1016/0021-9797(92)90285-T

    Article  Google Scholar 

  29. Peillon, S.: Influence des effets électrostatiques liés à la radioactivité sur les forces d’adhésion et sur la mise en suspension de particules métalliques. Physique [physics]. Sorbonne Universite. (2020). https://hal.archives-ouvertes.fr/tel-03019747

  30. Benito, J.G., Valenzuela Aracena, K.A., Uñac, R.O., Vidales, A.M., Ippolito, I.: Monte Carlo modelling of particle resuspension on a flat surface. J. Aerosol Sci. 79, 126–139 (2015). https://doi.org/10.1016/j.jaerosci.2014.10.006

    Article  ADS  Google Scholar 

  31. Rondeau, A.: Etude de la mise en suspension aéraulique appliquée à la problématique des poussières dans le futur tokamak ITER, ISRN/IRSN/2016–189, (2015)

  32. Wen, H.Y., Kasper, G.: On the kinetics of particle reentrainment from surfaces. J. Aerosol Sci. 20, 483–498 (1989). https://doi.org/10.1016/0021-8502(89)90082-7

    Article  ADS  Google Scholar 

  33. Binder, K., Heermann, D.W.: Monte Carlo Simulation in statical physics: An introduction, 5th edn. Springer Verlag, Berlin (2010)

    Book  Google Scholar 

  34. Ibrahim, A.H., Dunn, P.F., Brach, R.M.: Microparticle detachment from surfaces exposed to turbulent air flow: Controlled experiments and modeling. J. Aerosol Sci. 34, 765–782 (2003). https://doi.org/10.1016/S0021-8502(03)00031-4

    Article  ADS  Google Scholar 

  35. Guingo, M., Minier, J.P.: A new model for the simulation of particle resuspension by turbulent flows based on a stochastic description of wall roughness and adhesion forces. J. Aerosol Sci. 39, 957–973 (2008). https://doi.org/10.1016/j.jaerosci.2008.06.007

    Article  ADS  Google Scholar 

  36. Rabinovich, E., Kalman, H.: Incipient motion of individual particles in horizontal particle-fluid systems: B. Theoretical analysis. Powder Technol. 192, 326–338 (2009). https://doi.org/10.1016/j.powtec.2009.01.014

    Article  Google Scholar 

  37. Butt, H.J., Farshchi-Tabrizi, M., Käppl, M.: Using capillary forces to determine the geometry of nanocontacts. J. Appl. Phys. (2006). https://doi.org/10.1063/1.2210188

    Article  Google Scholar 

  38. Fichthorn, K.A., Weinberg, W.H.: Theoretical foundations of dynamical Monte Carlo simulations. J. Chem. Phys. 95, 1090–1096 (1991). https://doi.org/10.1063/1.461138

    Article  ADS  Google Scholar 

  39. Valenzuela Aracena, K.A., Uñac, R.O., Ippolito, I., Vidales, A.M.: Movement initiation of millimeter particles on a rotating rough surface: The role of adhesion. Particuology. (2020). https://doi.org/10.1016/j.partic.2020.02.004

    Article  Google Scholar 

Download references

Acknowledgements

The work was partially financed by grant UBACyT2018 20020170100225BA from Universidad de Buenos Aires, grant PROICO 03-2718 from Universidad Nacional de San Luis and grant PIP CONICET 353 from Consejo Nacional de Investigaciones Científicas y Técnicas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Binda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binda, L., Vidales, A.M., Uñac, R. et al. Effect of humidity on the static angle in granular systems. Granular Matter 23, 38 (2021). https://doi.org/10.1007/s10035-021-01109-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01109-2

Keywords

Navigation