Skip to main content
Log in

Machine learning-based crop recognition from aerial remote sensing imagery

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Timely and accurate acquisition of crop distribution and planting area information is important for making agricultural planning and management decisions. This study employed aerial imagery as a data source and machine learning as a classification tool to statically and dynamically identify crops over an agricultural cropping area. Comparative analysis of pixel-based and object-based classifications was performed and classification results were further refined based on three types of object features (layer spectral, geometry, and texture). Static recognition using layer spectral features had the highest accuracy of 75.4% in object-based classification, and dynamic recognition had the highest accuracy of 88.0% in object-based classification based on layer spectral and geometry features. Dynamic identification could not only attenuate the effects of variations on planting dates and plant growth conditions on the results, but also amplify the differences between different features. Object-based classification produced better results than pixel-based classification, and the three feature sets (layer spectral alone, layer spectral and geometry, and all three) resulted in only small differences in accuracy in object-based classification. Dynamic recognition combined with object-based classification using layer spectral and geometry features could effectively improve crop classification accuracy with high resolution aerial imagery. The methodologies and results from this study should provide practical guidance for crop identification and other agricultural mapping applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer M E, Cipra J E (1973). Identification of agricultural crops by computer processing of ERTS MSS data. In: The Proceedings of the Symposium on Significant Results Obtained from the Earth Resources Technology Satellite-1. New Carollton, IN, USA, 3, 205–212

  • Benz U C, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm Remote Sens, 58(3–4): 239–258

    Article  Google Scholar 

  • Boryan C, Yang Z, Mueller R, Craig M (2011). Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int, 26(5): 341–358

    Article  Google Scholar 

  • Breiman L, Friedman J, Stone C J, Olshen R (1984). Classification and Regression Trees. New York: Wadsworth Inc

    Google Scholar 

  • Cai Y, Guan K, Peng J, Wang S, Seifert C, Wardlow B, Li Z (2018). A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens Environ, 210: 35–47

    Article  Google Scholar 

  • Camargo Neto J (2004). A combined statistical-soft computing approach for classification and mapping weed species in minimum-tillage systems. Dissertation for the Doctoral Degree. Lincoln: University of Nebraska

    Google Scholar 

  • Chubey M S, Franklin S E, Wulder M A (2006). Object-based analysis of Ikonos-2 imagery for extraction of forest inventory parameters. Photogramm Eng Remote Sensing, 72(4): 383–394

    Article  Google Scholar 

  • Congalton R G (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ, 37 (1): 35–46

    Article  Google Scholar 

  • Damian J M, Pias O H de C, Cherubin M R, da Fonseca A Z, Fornari E Z, Santi A L (2020). Applying the NDVI from satellite images in delimiting management zones for annual crops. Sci Agric, 77(1): e20180055

    Article  Google Scholar 

  • Dimov D, Löw F, Uhl J H, Kenjabaev S, Dubovyk O, Ibrakhimov M, Biradar C (2019). Framework for agricultural performance assessment based on MODIS multitemporal data. J Appl Remote Sens, 13 (2): 1

    Article  Google Scholar 

  • Drăgut L, Csillik O, Eisank C, Tiede D (2014). Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J Photogramm Remote Sens, 88(100): 119–127

    Article  Google Scholar 

  • eCognition (2019). User Guide. Available at eCognition website

  • Farg E, Ramadan M N, Arafat S M (2019). Classification of some strategic crops in Egypt using multi-remotely sensing sensors and time series analysis. Egypt J Remote Sens Space Sci, 22(3): 263–270

    Google Scholar 

  • Foody G M (2009). Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sens Environ, 113(8): 1658–1663

    Article  Google Scholar 

  • Hossain M D, Chen D (2019). Segmentation for Object-Based Image Analysis (OBIA): a review of algorithms and challenges from remote sensing perspective. ISPRS J Photogramm Remote Sens, 150: 115–134

    Article  Google Scholar 

  • Hu Q, Wu W B, Song Q, Lu M, Chen D, Yu Q Y, Tang H J (2017). How do temporal and spectral features matter in crop classification in Heilongjiang Province, China? J Integr Agric, 16(02): 324–336

    Article  Google Scholar 

  • Huete A R (1988). A soil-adjusted vegetation index (SAVI). Remote Sens Environ, 25(3): 295–309

    Article  Google Scholar 

  • Hughes G F (1968). On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory, 14(1): 55–63

    Article  Google Scholar 

  • Jakubauskas M E, Legates D R, Kastens J H (2002). Crop identification using harmonic analysis of time-series AVHRR NDVI data. Comput Electron Agric, 37(1–3): 127–139

    Article  Google Scholar 

  • Jensen J R (2005). Introductory Digital Image Processing: A Remote Sensing Perspective. New Jersey: Prentice-Hall, Inc

    Google Scholar 

  • Jordan C F (1969). Derivation of leaf-area index from quality of light on the forest floor. Ecological Society of America, 50(4): 663–666

    Google Scholar 

  • Kenduiywo B K, Bargiel D, Soergel U (2016). Crop type mapping from a sequence of terrasar-X images with dynamic conditional random fields. ISPRS Annals of the Photogrammetry. Remote Sensing and Spatial Information Sciences, 3(7): 59–66

    Google Scholar 

  • Knight J F, Lunetta R S, Ediriwickrema J, Khorram S (2006). Regional scale land cover characterization using MODIS-NDVI 250 m multitemporal imagery: a phenology-based approach. GIsci Remote Sens, 43(1): 1–23

    Article  Google Scholar 

  • Laliberte A S, Browning D M, Rango A (2012). A comparison of three feature selection methods for object-based classification of sub-decimeter resolution UltraCam-L imagery. Int J Appl Earth Obs Geoinf, 15: 70–78

    Google Scholar 

  • Lambert M J, Traoré P C S, Blaes X, Baret P, Defourny P (2018). Estimating smallholder crops production at village level from Sentinel-2 time series in Mali’s cotton belt. Remote Sens Environ, 216: 647–657

    Article  Google Scholar 

  • Lichtblau E, Oswald C J (2019). Classification of impervious land-use features using object-based image analysis and data fusion. Comput Environ Urban Syst, 75: 103–116

    Article  Google Scholar 

  • Löw F, Michel U, Dech S, Conrad C (2013). Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines. ISPRS J Photogramm Remote Sens, 85: 102–119

    Article  Google Scholar 

  • Ma L, Li M, Ma X, Cheng L, Du P, Liu Y (2017). A review of supervised object-based land-cover image classification. ISPRS J Photogramm Remote Sens, 130: 277–293

    Article  Google Scholar 

  • Masialeti I, Egbert S, Wardlow B D (2010). A comparative analysis of phenological curves for major crops in Kansas. GIsci Remote Sens, 47(2): 241–259

    Article  Google Scholar 

  • Meyer G E, Hindman T, Laksmi K (1999). Machine vision detection parameters for plant species identification. Proc SPIE, 3543: 327–335

    Article  Google Scholar 

  • Murmu S, Biswas S (2015). Application of fuzzy logic and neural network in crop classification: a review. Aquatic Procedia, 4: 1203–1210

    Article  Google Scholar 

  • Myint S W, Gober P, Brazel A, Grossman-Clarke S, Weng Q H (2011). Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens Environ, 115(5): 1145–1161

    Article  Google Scholar 

  • Odenweller J B, Johnson K I (1984). Crop identification using Landsat temporal-spectral profiles. Remote Sens Environ, 14(1–3): 39–54

    Article  Google Scholar 

  • Mutanga O, Dube T, Galal O (2017). Remote sensing of crop health for food security in Africa: potentials and constraints. Remote Sensing Applications: Society and Environment, 8: 231–239

    Article  Google Scholar 

  • Pal M (2013). Hybrid genetic algorithm for feature selection with hyperspectral data. Remote Sens Lett, 4(7): 619–628

    Article  Google Scholar 

  • Pal M, Foody G M (2010). Feature selection for classification of hyperspectral data by SVM. IEEE Trans Geosci Remote Sens, 48(5): 2297–2307

    Article  Google Scholar 

  • Peña M A, Brenning A (2015). Assessing fruit-tree crop classification from Landsat-8 time series for the Maipo Valley, Chile. Remote Sens Environ, 171: 234–244

    Article  Google Scholar 

  • Richards J A, Jia X (2006). Remote Sensing Digital Image Analysis, 3rd ed. Berlin: Springer-Verlag, 273–274.

    Book  Google Scholar 

  • Richardson A J, Everitt J H (1992). Using spectral vegetation indices to estimate rangeland productivity. Geocarto Int, 7(1): 63–69

    Article  Google Scholar 

  • Rouse J W Jr, Haas R H, Schell J A, Deering D W (1974). Monitoring vegetation systems in the great plains with ERTS. In: Proceedings of the Third ERTS-1 Symposium NASA, NASA SP-351. Washington: 309–317

  • Rondeaux G, Steven M, Baret F (1996). Optimization of soil-adjusted vegetation indices. Remote Sens Environ, 55(2): 95–107

    Article  Google Scholar 

  • Sakamoto T, Gitelson A A, Nguy-Robertson A L, Arkebauer T J, Wardlow B D, Suyker A E, Verma S B, Shibayama M (2012). An alternative method using digital cameras for continuous monitoring of crop status. Agric Meteorol, 154–155: 113–126

    Article  Google Scholar 

  • Shen Y, Chen J, Xiao L, Pan D (2019). Optimizing multiscale segmentation with local spectral heterogeneity measure for high resolution remote sensing images. ISPRS J Photogramm Remote Sens, 157: 13–25

    Article  Google Scholar 

  • Siachalou S, Mallinis G, Tsakiri-Strati M (2015). A hidden markov models approach for crop classification: linking crop phenology to time series of multi-sensor remote sensing data. Remote Sens, 7(4): 3633–3650

    Article  Google Scholar 

  • Sibanda M, Murwira A (2012). The use of multi-temporal MODIS images with ground data to distinguish cotton from maize and sorghum fields in smallholder agricultural landscapes of Southern Africa. Int J Remote Sens, 33(16): 4841–4855

    Article  Google Scholar 

  • Song H, Yang C, Zhang J, Hoffmann W C, He D, Thomasson J A (2016). Comparison of mosaicking techniques for airborne images from consumer-grade cameras. J Appl Remote Sens, 10(1): 016030

    Article  Google Scholar 

  • Torres-Sánchez J, Peña J M, de Castro A I, López-Granados F (2014). Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput Electron Agric, 103: 104–113

    Article  Google Scholar 

  • van Klompenburg T, Kassahun A, Catal C (2020). Crop yield prediction using machine learning: A systematic literature review. Comput Electron Agric, 177: 105709

    Article  Google Scholar 

  • van Niel T G, McVicar T R (2004). Determining temporal windows for crop discrimination with remote sensing: a case study in southeastern Australia. Comput Electron Agric, 45(1–3): 91–108

    Article  Google Scholar 

  • Waldhoff G, Lussem U, Bareth G (2017). Multi-Data Approach for remote sensing-based regional crop rotation mapping: a case study for the Rur catchment, Germany. Int J Appl Earth Obs Geoinf, 61: 55–69

    Google Scholar 

  • Wang P, Fan E, Wang P (2021). Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognit Lett, 141: 61–67

    Article  Google Scholar 

  • Woebbecke D M, Meyer G E, Von Bargen K, Mortensen D A, Woebbecke D M, Meyer G E, von Bargen K, Mortensen D A (1995). Color indices for weed identification under various soil, residue, and lighting conditions. Trans ASAE, 38(1): 259–269

    Article  Google Scholar 

  • Wu B, Meng J, Li Q, Yan N, Du X, Zhang M (2014). Remote sensing-based global crop monitoring: experiences with China’s CropWatch system. Int J Digit Earth, 7(2): 113–137

    Article  Google Scholar 

  • Wu M, Yang C, Song X, Hoffmann W C, Huang W, Niu Z, Wang C, Li W, Yu B (2018). Monitoring cotton root rot by synthetic Sentinel-2 NDVI time series using improved spatial and temporal data fusion. Sci Rep, 8(1): 2016

    Article  Google Scholar 

  • Yang C, Everitt J H, Murden D (2011). Evaluating high resolution SPOT 5 satellite imagery for crop identification. Comput Electron Agric, 75 (2): 347–354

    Article  Google Scholar 

  • Yang C, Hoffmann W C (2015). Low-cost single-camera imaging system for aerial applicators. J Appl Remote Sens, 9(1): 096064

    Article  Google Scholar 

  • Yu Q, Gong P, Clinton N, Biging G, Kelly M, Schirokauer D (2006). Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogramm Eng Remote Sensing, 72(7): 799–811

    Article  Google Scholar 

  • Zhang X, Xiao P, Song X, She J (2013). Boundary-constrained multi-scale segmentation method for remote sensing images. ISPRS J Photogramm Remote Sens, 78: 15–25

    Article  Google Scholar 

  • Zhang J, Feng L, Yao F (2014). Improved maize cultivated area estimation over a large scale combining MODIS-EVI time series data and crop phenological information. ISPRS J Photogramm Remote Sens, 94: 102–113

    Article  Google Scholar 

  • Zhang J, Yang C, Song H, Hoffmann W, Zhang D, Zhang G (2016). Evaluation of an airborne remote sensing platform consisting of two consumer-grade cameras for crop identification. Remote Sens, 8(3): 257

    Article  Google Scholar 

  • Zheng B, Myint S W, Thenkabail P S, Aggarwal R M (2015). A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. Int J Appl Earth Obs Geoinf, 34: 103–112

    Google Scholar 

  • Zhong L, Gong P, Biging G S (2014). Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using Landsat imagery. Remote Sens Environ, 140: 1–13

    Article  Google Scholar 

  • Zhou F, Zhang A, Townley-Smith L (2013). A data mining approach for evaluation of optimal time-series of MODIS data for land cover mapping at a regional level. ISPRS J Photogramm Remote Sens, 84: 114–129

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (No. 2020YFD1100204), and the Provincial Key Basic Research Project (No. 2019AB002). The authors wish to thank Lee Denham and Fred Gomez at USDA-ARS in College Station, Texas for the collection of the airborne images. Mention of a commercial product is solely for the purpose of providing specific information and should not be construed as a product endorsement by the authors or the institutions with which the authors are affiliated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenghai Yang or Qing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Yang, C., Huang, W. et al. Machine learning-based crop recognition from aerial remote sensing imagery. Front. Earth Sci. 15, 54–69 (2021). https://doi.org/10.1007/s11707-020-0861-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-020-0861-x

Keywords

Navigation