Skip to main content
Log in

Comparison of high-order silanes and island formation phenomena during SiGe epitaxy at 500 °C

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

High-order silane precursors, including trisilane, are candidates for the low-temperature epitaxy process owing to the low energy of Si–Si bond. Higher order silanes are regarded as being more reactive than lower order ones. We compared the SiGe epitaxial growth behaviors of high-order silane precursors on Si substrates in an ultra-high vacuum chemical vapor deposition chamber without a carrier gas. SiGe epitaxial layers with a thickness of 25 nm or more were grown using disilane, trisilane, or tetrasilane precursor at 500 °C. Interestingly, trisilane exhibited more severe island formation than tetrasilane, which has higher reactivity than trisilane, even at lower partial pressure. These islands were not eliminated by lowering pressure but could be suppressed by higher Ge content owing to enhanced surface diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. C. Porret, A. Hikavyy, J.F.G. Granados, S. Baudot, A. Vohra, B. Kunert, B. Douhard, J. Bogdanowicz, M. Schaekers, D. Kohen, J. Margetis, J. Tolle, L.P.B. Lima, A. Sammak, G. Scappucci, E. Rosseel, R. Langer, R. Loo, Very low temperature epitaxy of group-IV semiconductors for use in FinFET, stacked nanowires and monolithic 3D integration. ECS J. Solid State Sci. Technol. 8, 392 (2019). https://doi.org/10.1149/2.0071908jss

    Article  Google Scholar 

  2. A. Hikavyy, I. Zyulkov, H. Mertens, L. Witters, R. Loo, N. Horiguchi, Use of high order precursors for manufacturing gate all around devices. Mater. Sci. Semicond. Process. 70, 24 (2017). https://doi.org/10.1016/j.mssp.2016.10.044

    Article  Google Scholar 

  3. D.J. Paul, Si/SiGe heterostructures: from material and physics to devices and circuits Semiconductor science and technology. Semicond. Sci. Technol. 19(10), R75 (2004). https://doi.org/10.1088/0268-1242/19/10/R02

    Article  ADS  Google Scholar 

  4. C.C. Yang, T.Y. Hsieh, W.H. Huang, C.H. Shen, J.M. Shieh, W.K. Yeh, M.C. Wu, Recent progress in low-temperature-process monolithic three dimension technology. Japanese J. Appl. Phys. 57(4S), 04FA06 (2018). https://doi.org/10.7567/JJAP.57.04FA06

    Article  Google Scholar 

  5. Y.R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds (CRC Press, Boca Raton, 2003).

    Google Scholar 

  6. T.N. Adam, S. Bedell, A. Reznicek, D.K. Sadana, A. Venkateshan, T. Tsunoda, T. Seino, J. Nakatsuru, S.R. Shinde, Low-temperature growth of epitaxial (1 0 0) silicon based on silane and disilane in a 300 mm UHV/CVD cold-wall reactor. J. Cryst. Growth 312, 3473 (2010). https://doi.org/10.1016/j.jcrysgro.2010.09.012

    Article  ADS  Google Scholar 

  7. J.M. Hartmann, V. Benevent, J.F. Damlencourt, T. Billon, A benchmarking of silane, disilane and dichlorosilane for the low temperature growth of group IV layers. Thin Solid Films 520, 3185 (2012). https://doi.org/10.1016/j.tsf.2011.10.164

    Article  ADS  Google Scholar 

  8. P.R. Fischer, M. Bauer, S.R.A. Van Aerde, T.G.M. Oosterlaken, M. Yan, W.A. Verweij, B.W.M. Bozon, P.M. Zagwijn, Low temperature Silcore® deposition of undoped and doped silicon films. ECS Trans. 3, 203 (2006). https://doi.org/10.1149/1.2356280

    Article  Google Scholar 

  9. A. Gouyé, O. Kermarrec, A. Halimaoui, Y. Campidelli, D. Rouchon, M. Burdin, P. Holliger, D. Bensahel, Low-temperature RPCVD of Si, SiGe alloy, and Si1−yCy films on Si substrates using trisilane (Silcore®). J. Cryst. Growth. 311, 3522 (2009). https://doi.org/10.1016/j.jcrysgro.2009.04.011

    Article  ADS  Google Scholar 

  10. B. Vincent, R. Loo, W. Vandervorst, G. Brammertz, M. Caymax, Low temperature Si homo-epitaxy by reduced pressure chemical vapor deposition using dichlorosilane, silane and trisilane. J. Cryst. Growth. 312, 2671 (2010). https://doi.org/10.1016/j.jcrysgro.2010.06.013

    Article  ADS  Google Scholar 

  11. M. Shinriki, K. Chung, S. Hasaka, P. Brabant, H. He, T.N. Adam, D. Sadana, Gas phase particle formation and elimination on Si (100) in low temperature reduced pressure chemical vapor deposition silicon-based epitaxial layers. Thin Solid Films 520, 3190 (2012). https://doi.org/10.1016/j.tsf.2011.10.165

    Article  ADS  Google Scholar 

  12. R. Hazbun, J. Hart, R. Hickey, A. Ghosh, N. Fernando, S. Zollner, T.N. Adam, J. Kolodzey, Silicon epitaxy using tetrasilane at low temperatures in ultra-high vacuum chemical vapor deposition. J. Cryst. Growth. 444, 21 (2016). https://doi.org/10.1016/j.jcrysgro.2016.03.018

    Article  ADS  Google Scholar 

  13. J. Hart, R. Hazbun, D. Eldridge, R. Hickey, N. Fernando, T.N. Adam, S. Zollner, J. Kolodzey, Tetrasilane and digermane for the ultra-high vacuum chemical vapor deposition of SiGe alloys. Thin Solid Films 604, 23 (2016). https://doi.org/10.1016/j.tsf.2016.03.010

    Article  ADS  Google Scholar 

  14. K.H. Chung, N. Yao, J. Benziger, J.C. Sturm, K.K. Singh, D. Carlson, S. Kuppurao, Ultrahigh growth rate of epitaxial silicon by chemical vapor deposition at low temperature with neopentasilane. Appl. Phys. Lett. 92, 113506 (2008). https://doi.org/10.1063/1.2897325

    Article  ADS  Google Scholar 

  15. J.C. Sturm, K.H. Chung, Chemical vapor deposition epitaxy of silicon-based materials using neopentasilane. ECS Trans. 16, 799 (2008). https://doi.org/10.1149/1.2986839

    Article  Google Scholar 

  16. P.M. Garone, J.C. Sturm, P.V. Schwartz, S.A. Schwarz, B.J. Wilkens, Silicon vapor phase epitaxial growth catalysis by the presence of germane. Appl. Phys. Lett. 56, 1275 (1990). https://doi.org/10.1063/1.102535

    Article  ADS  Google Scholar 

  17. A. Abedin, M. Moeen, C. Cappetta, M. Östling, H.H. Radamson, Sensitivity of the crystal quality of SiGe layers grown at low temperatures by trisilane and germane. Thin Solid Films 613, 38 (2016). https://doi.org/10.1016/j.tsf.2015.10.001

    Article  ADS  Google Scholar 

  18. J.G. Martin, H.E. O’Neal, M.A. Ring, Thermal decomposition kinetics of polysilanes: disilane, trisilane, and tetrasilane. Int. J. Chem. Kinet. 22, 613 (1990). https://doi.org/10.1002/kin.550220606

    Article  Google Scholar 

  19. M.T. Swihart, S.L. Girshick, Thermochemistry and kinetics of silicon hydride cluster formation during thermal decomposition of silane. J. Phys. Chem. B. 103, 64 (1999). https://doi.org/10.1021/jp983358e

    Article  Google Scholar 

  20. A.A. Onischuk, V.N. Panfilov, Mechanism of thermal decomposition of silanes. Russ. Chem. Rev. 70, 321 (2001). https://doi.org/10.1070/RC2001v070n04ABEH000603

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank SK Materials for providing the high-order silane precursors. We would like to thank Editage (https://www.editage.co.kr) for English language editing.

Funding

This work was supported by the Future Semiconductor Device Technology Development Program (20004274) funded by the Ministry of Trade, Industry & Energy (MOTIE), and the Technology Innovation Program (20010598) funded by the Ministry of Trade, Industry & Energy (MOTIE) and Korea Semiconductor Research Consortium (KSRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Hong Ko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byeon, DS., Choi, Y., Cho, C. et al. Comparison of high-order silanes and island formation phenomena during SiGe epitaxy at 500 °C. J. Korean Phys. Soc. 78, 712–718 (2021). https://doi.org/10.1007/s40042-021-00134-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00134-x

Keywords

Navigation