Skip to main content
Log in

Weighted Discriminative Sparse Representation for Image Classification

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Sparse representation methods based on \(l _2\) norm regularization have attracted much attention due to its low computational cost and competitive performance. How to enhance the discriminability of \(l _2\) norm regularization-based representation method is a meaningful work. In this paper, we put forward a novel \(l _2\) norm regularization-based representation method, called Weighted Discriminative Sparse Representation for Classification (WDSRC), in which we consider the global discriminability and the local discriminability using two discriminative regularization terms of representation. The global discriminability is obtained by decorrelating the representation results stemming from all distinct classes. The local discriminability is achieved by the weighted representation in which the representation coefficient of the training images dissimilar to the test image will be reduced and the representation coefficient of the training images similar to the test image will be increased, which restrains the training images dissimilar to the test image and promotes the training images similar to the test image as much as possible in representing the test sample. By considering the global and local discriminability of representations simultaneously, the proposed WDSRC method can gain more discriminative representation for classification. Extensive experiments on benchmark datasets of object, face, action and flower demonstrate the effectiveness of the proposed WDSRC method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044

    Article  Google Scholar 

  2. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  3. Yang J, Wright J, Huang T S, Ma Y (2008) Image super-resolution as sparse representation of raw image patches. In: 2008 IEEE conference on computer vision and pattern recognition

  4. Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873

    Article  MathSciNet  Google Scholar 

  5. Zheng WL, Shen SC, Lu BL (2016) Online depth image-based object tracking with sparse representation and object detection. Neural Process Lett 45(3):745–758

    Article  Google Scholar 

  6. Ma Z, Xiang Z (2017) Robust visual tracking via binocular consistent sparse learning. Neural Process Lett 46(2):627–642

    Article  MathSciNet  Google Scholar 

  7. Yin H, Li S, Fang L (2013) Simultaneous image fusion and super-resolution using sparse representation. Information Fusion 14(3):229–240

    Article  Google Scholar 

  8. Yin H, Li Y, Chai Y, Liu Z, Zhu Z (2016) A novel sparse-representation-based multi-focus image fusion approach. Neurocomputing 216:216–229

    Article  Google Scholar 

  9. Zheng H, Xie J, Jin Z (2012) Heteroscedastic sparse representation based classification for face recognition. Neural Process Lett 35(3):233–244

    Article  Google Scholar 

  10. Liu Q (2016) Kernel local sparse representation based classifier. Neural Process Lett 43(1):85–95

    Article  Google Scholar 

  11. Liu Z, Pu J, Xu M, Qiu Y (2015) Face recognition via weighted two phase test sample sparse representation. Neural Process Lett 41(1):43–53

    Article  Google Scholar 

  12. Tao Y, Yang J, Gui W (2017) Robust \(l_{2,1}\) norm-based sparse dictionary coding regularization of homogenous and heterogenous graph embeddings for image classifications. Neural Process Lett 47(3):1149–1175

    Article  Google Scholar 

  13. Yin H, Wu X (2013) A new feature fusion approach based on LBP and sparse representation and its application to face recognition. In: International workshop on multiple classifier systems, pp 364–373

  14. Song X, Shao C, Yang X, Wu X (2017) Sparse representation-based classification using generalized weighted extended dictionary. Soft Comput 21(15):4335–4348

    Article  Google Scholar 

  15. Shao C, Song X, Feng Z, Wu X, Zheng Y (2017) Dynamic dictionary optimization for sparse-representation-based face classification using local difference images. Inf Sci 393:1–14

    Article  Google Scholar 

  16. Kim SJ, Koh K, Lustig M (2008) An interior-point method for large-scale \(l_{1}\)-regularized least squares. IEEE J Sel Top Signal Process 1(4):606–617

    Article  Google Scholar 

  17. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202

    Article  MathSciNet  Google Scholar 

  18. Yang AY, Sastry SS, Ganesh A, Ma Y (2010) Fast \(l_{1}\) -minimization algorithms and an application in robust face recognition: a review. In: 17th IEEE international conference on image processing (ICIP), pp 1–12

  19. Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: Which helps face recognition? In: 2011 International conference on computer visionn, pp 471–478

  20. Cai S, Zhang L, Zuo W, Feng X (2016) A probabilistic collaborative representation based approach for pattern classification. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 2950–2959

  21. Yang M, Zhang D, Wang S (2012) Relaxed collaborative representation for pattern classification. In: IEEE Conference on computer vision and pattern recognition (CVPR), pp 2224–2231

  22. Xu Y, Zhong Z, Yang J, You J, Zhang D (2017) A new discriminative sparse representation method for robust face recognition via \(l_{2}\) regularization. IEEE Trans Neural Netw Learn Syst 28(10):2233-2242

  23. Gou J, Hou B, Ou W, Mao Q, Yang H, Liu Y (2019) Several robust extensions of collaborative representation for image classification. Neurocomputing 348:120–133

    Article  Google Scholar 

  24. Chao Y, Yeh Y, Chen Y, Lee Y, Wang Y (2011) Locality-constrained group sparse representation for robust face recognition. IEEE international conference on image processing (ICIP), pp 761–764

  25. Tang X, Feng G, Cai J (2014) Weighted group sparse representation for undersampled face recognition. Neurocomputing 145:402–415

    Article  Google Scholar 

  26. Keinert F, Lazzaro D, Morigi S (2019) A robust group-sparse representation variational method with applications to face recognition. IEEE Trans Image Process 28(6):2785–2798

    Article  MathSciNet  Google Scholar 

  27. Lin S, Kung S, Lin L (1997) Face recognition/detection by probabilistic decision-based neural network. IEEE Trans Neural Netw 8(1):114–132

    Article  Google Scholar 

  28. Aitkenhead MJ, Mcdonald AJS (2003) A neural network face recognition system. Eng Appl Artif Intell 16(3):167–176

    Article  Google Scholar 

  29. Szu H, Kopriva I (2001) Artificial neural networks for noisy image super-resolution. Opt Commun 198(1):71–81

    Article  Google Scholar 

  30. Chen D, Li S, Lin F, Wu Q (2019) New super-twisting zeroing neural-dynamics model for tracking control of parallel robots: a finite-time and robust solution. IEEE Trans Syst Man Cybern 1–10

  31. Chen D, Li S, Wu Q, Luo X (2020) New disturbance rejection constraint for redundant robot manipulators: an optimization perspective. IEEE Trans Ind Inf 16(4):2221–2232

    Article  Google Scholar 

  32. Nene SA, Nayar SK, Murase H (1996) Columbia object image library (COIL-20). Technical Report CUCS-005-96

  33. Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In: IEEE workshop on applications of computer vision, pp 138–142

  34. http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html

  35. Gross R, Matthews I, Cohn JF, Kanade T, Baker S (2010) Multi-PIE. Image Vis Comput 28(5):807–813

    Article  Google Scholar 

  36. Goel N, Bebi G, Nefian AV (2005) Face recognition experiments with random projection. In: Proc of the Spie, pp 426–437

  37. Learned-Miller E, Huang GB, Roychowdhury A, Li H, Hua G (2016) Labeled faces in the wild: a survey. Advances in face detection and facial image analysis, pp 189–248

  38. Yao B, Jiang X, Khosla A, Lin A L, Li FF (2011) Human action recognition by learning bases of action attributes and parts. In: IEEE international conference on computer vision, pp 1331–1338

  39. Nilsback ME, Zisserman A (2008) Automated flower classification over a large number of classes. In: Sixth Indian conference on computer vision, graphics and image processing, pp 16–19

  40. Lee K, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698

    Article  Google Scholar 

  41. Chen Z, Wu X, Yin H, Kittler J (2019) Low-rank discriminative least squares regression for image classification. arXiv: Computer Vision and Pattern Recognition

  42. Xu J, An W, Zhang L, Zhang D (2019) Sparse, collaborative, or nonnegative representation: Which helps pattern classification? Pattern Recogn 88:679–688

    Article  Google Scholar 

  43. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv: Computer Vision and Pattern Recognition

  44. Sharma G, Jurie F, Schmid C (2013) Expanded parts model for human attribute and action recognition in still images. In: Computer vision and pattern recognition, pp 652–656

  45. Khan FS, Xu J, De Weijer JV, Bagdanov AD, Anwer RM, Lopez AM (2015) Recognizing actions through action-specific person detection. IEEE Trans Image Process 24(11):4422–4432

    Article  MathSciNet  Google Scholar 

  46. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Neural information processing systems, pp 1097–1105

  47. Chai Y, Lempitsky V, Zisserman A (2011) BiCoS: a bi-level co-segmentation method for image classification. In: 2011 International conference on computer vision, pp 2579–2586

  48. Angelova A, Zhu S (2013) Efficient object detection and segmentation for fine-grained recognition. In: Computer vision and pattern recognition, pp 811–818

  49. Murray N, Perronnin F (2014) Generalized max pooling. In: 2014 IEEE conference on computer vision and pattern recognition, pp 2473–2480

  50. Razavia AS, Azizpour H, Sullivan J, Carlsson S (2014) CNN Features off-the-shelf: an Astounding Baseline for Recognition. In: 2014 IEEE conference on computer vision and pattern recognition workshops, pp 512–519

  51. Simon M, Rodner E (2015) Neural activation constellations: unsupervised part model discovery with convolutional networks. In: 2015 IEEE international conference on computer vision (ICCV), pp 1143–1151

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFC1601800, in part by the National Natural Science Foundation of China (Grant Nos. 61672265, U1836218, 62020106012, 61603159), in part by the 111 Project of Ministry of Education of China (Grant No. B12018) and in part by Natural Science Foundation of Xiaogan, China under Grant XGKJ2020010063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} \min _{b } \Vert {y-Xb}\Vert _2 ^2 + \gamma \sum _{i=1}^{C}\sum _{j=1}^{C} \Vert {X_i b_i + X_j b_j} \Vert _2 ^2+\lambda \Vert {Wb}\Vert _2 ^2 \end{aligned}$$
(11)

The derivative of the objective function (11) can be computed as follows. First

$$\begin{aligned}&\frac{\mathrm {d}\Vert {y-Xb}\Vert _2 ^2}{\mathrm {d}b}= -2X^T(y-Xb) \end{aligned}$$
(16)
$$\begin{aligned}&\frac{\mathrm {d}\Vert Wb\Vert _2 ^2}{\mathrm {d}b}= 2W^TWb \end{aligned}$$
(17)

Let \( f(b)=\gamma \sum _{i=1}^{C}\sum _{j=1}^{C} \Vert {X_i b_i + X_j b_j} \Vert _2 ^2 \), since f(b) dose not overtly include b, we first compute partial derivatives \(\frac{\partial f(b)}{\partial b_k}\) and then obtain \( \frac{\mathrm {d}f}{\mathrm {d}b} \) by using all \(\frac{\partial f(b)}{\partial b_k}\) (k = 1,2,...,C).

$$\begin{aligned} \begin{aligned} f(b)&= \gamma \left( \sum _{i=1,2,\ldots ,C,i\ne k} \Vert {X_i b_i + X_k b_k }\Vert _2 ^2 + \sum _{j=1,2,\ldots ,C,j\ne k} \Vert {X_k b_k + X_j b_j }\Vert _2 ^2 \right. \\&\left. \qquad \sum _{i=1,2,\ldots ,C,i\ne k}\sum _{j=1,2,\ldots ,C,j\ne k} \Vert {X_i b_i + X_j b_j}\Vert _2 ^2\right) \\&= \gamma \left( 2 \sum _{i=1,2,\ldots ,C,i\ne k} \Vert {X_i b_i + X_k b_k }\Vert _2 ^2 + \sum _{i=1,2,\ldots ,C,i\ne k}\sum _{j=1,2,\ldots ,C,j\ne k} \Vert {X_i b_i + X_j b_j}\Vert _2 ^2\right) \end{aligned} \end{aligned}$$
(18)

Accordingly, the partial derivative of f(b) with respect to \(b_k\) can be computed as Equation in (19)

$$\begin{aligned} \begin{aligned} \frac{\partial f(b)}{\partial b_k}&= \frac{\partial }{\partial b_k} \left( \gamma \sum _{i=1}^{C}\sum _{j=1}^{C} \Vert {X_i b_i + X_j b_j} \Vert _2 ^2 \right) \\&= \gamma \frac{\partial }{\partial b_k}\left( 2 \sum _{i=1,2,\ldots ,C,i\ne k} \Vert {X_i b_i + X_k b_k }\Vert _2 ^2 + \sum _{i=1,2,\ldots ,C,i\ne k}\sum _{j=1,2,\ldots ,C,j\ne k} \Vert {X_i b_i + X_j b_j}\Vert _2 ^2\right) \\&= 2 \gamma \sum _{i=1,2,\ldots ,C,i\ne k} 2X^T_k(X_kb_k+X_ib_i) \\&= 4 \gamma X^T_k\left( (C-1)X_kb_k + \sum \limits _{i=1,2,\ldots ,C,i\ne k}(X_kb_k+X_ib_i)\right) \\&= 4 \gamma X^T_k\left( (C-2)X_kb_k + \sum \limits _{i=1,2,\ldots ,C}(X_kb_k+X_ib_i)\right) \\&= 4 \gamma X^T_k((C-2){{X_kb_k}} + Xb)\\&= 4 \gamma (C-2)X^T_k{{X_kb_k}} + 4 \gamma X^T_kXb \end{aligned} \end{aligned}$$
(19)

Hence, \( \frac{\mathrm {d}f}{\mathrm {d}b} \) is computed as

$$\begin{aligned} \begin{aligned} \frac{\mathrm {d}f(b)}{\mathrm {d}b}&= \left( \begin{array}{c} \frac{ \partial f}{\partial b_1} \\ \ldots \\ \frac{\partial f}{\partial b_C}\\ \end{array} \right) = \left( \begin{array}{c} 4 \gamma (C-2) X^T_1{{X_1b_1}} + 4 \gamma X^T_1Xb\\ \ldots \\ 4 \gamma (C-2) X^T_C{{X_Cb_C}} + 4 \gamma X^TXb\\ \end{array} \right) \\&= 4\gamma (C-2)\left( \begin{array}{ccc} X^T_1{{X_1}} &{}\quad \ldots &{}\quad \mathbf{0 }\\ \ldots &{}\quad \ldots &{}\quad \ldots \\ \mathbf{0 } &{} \quad \ldots &{}\quad X^T_C{{X_C}}\\ \end{array} \right) \left( \begin{array}{ccc} {{b_1}}\\ \ldots \\ {{b_C}}\\ \end{array}\right) + 4\gamma \left( \begin{array}{ccc} X^T\\ \ldots \\ X^T_C\\ \end{array}\right) Xb \\&= 4\gamma (C-2){{Hb}} +4\gamma X^TXb \end{aligned} \end{aligned}$$
(20)

where \( H=\left( \begin{array}{ccc} X_1^T X_1 &{}\quad \ldots &{}\quad 0 \\ \vdots &{}\quad \ddots &{}\quad \vdots \\ 0 &{}\quad \ldots &{}\quad X_C^T X_C \\ \end{array} \right) \).

Finally, let \(p = \Vert {y-Xb}\Vert _2 ^2 + \gamma \sum _{i=1}^{C}\sum _{j=1}^{C} \Vert {X_i b_i + X_j b_j} \Vert _2 ^2+\lambda \Vert {Wb}\Vert _2 ^2 \), we have \(\frac{\mathrm {d}p}{\mathrm {d}{b}} = ((1+2\gamma )X^TX + 2\gamma (C-2)H + \lambda W^TW){{b}} - X^Ty\). The solution of (11) is obtained when \(\frac{\mathrm {d}p}{\mathrm {d}b}= 0 \), which leads to \(((1+2\gamma )X^TX + 2\gamma (C-2)H + \lambda W^TW){{b}} = X^Ty\). In conclusion, the solution to (11) is

$$\begin{aligned} b =((1+2\gamma )X^T X+2\gamma (C-2)H+\lambda W^T W)^- X^Ty \end{aligned}$$
(13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wu, XJ., Shu, Z. et al. Weighted Discriminative Sparse Representation for Image Classification. Neural Process Lett 53, 2047–2065 (2021). https://doi.org/10.1007/s11063-021-10489-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-021-10489-8

Keywords

Navigation