Skip to main content
Log in

Utility maximization in a multidimensional semimartingale model with nonlinear wealth dynamics

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

We explore martingale and convex duality techniques to maximize expected risk-averse utility from consumption in a general multi-dimensional (non-Markovian) semimartingale market model with jumps and non-linear wealth dynamics. The model allows to incorporate additional cash flows via non-linear margin payment functions in the drift term that depend on the allocation proportion. These can be used to cast frictions such as the impact of the portfolio choices of a ‘large’ investor on the expected assets’ returns, funding costs arising from differential borrowing and lending rates, and the cash inflow of a firm in a neoclassical economy with constant return-to-scale Cobb–Douglas technology subject to exogenous aggregate shocks. We provide a general verification theorem for random utility fields satisfying the usual Inada conditions, find conditions under which jumps in our model lead to precautionary saving, and present an explicit characterization for CRRA. We report two-fund separation-type results which assert that optimal allocations move along one-dimensional segments, and illustrate our results numerically for various margin payment functions and bounded variation tempered \(\alpha \)-stable jumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Barro, R.J.: Rare disasters and asset markets in the twentieth century. Q. J. Econ. 121(3), 823–866 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barro, R.J.: Rare disasters, asset prices, and welfare costs. Am. Econ. Rev. 99(1), 243–64 (2009)

    Article  Google Scholar 

  3. Barucci, E., Fontana, C., et al.: Financial Markets Theory: Equilibrium, Efficiency and Information, 2nd edn. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  4. Bian, B., Miao, S., Zheng, H.: Smooth value functions for a class of nonsmooth utility maximization problems. SIAM J. Financ. Math. 2(1), 727–747 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bielecki, T.R., Rutkowski, M.: Valuation and hedging of contracts with funding costs and collateralization. SIAM J. Financ. Math. 6(1), 594–655 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Björk, T., Davis, M.H., Landén, C.: Optimal investment under partial information. Math. Methods Oper. Res. 71(2), 371–399 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blanchet-Scalliet, C., El Karoui, N., Jeanblanc, M., Martellini, L.: Optimal investment decisions when time-horizon is uncertain. J. Math. Econ. 44(11), 1100–1113 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brunnermeier, M.K., Sannikov, Y.: A macroeconomic model with a financial sector. Am. Econ. Rev. 104(2), 379–421 (2014)

    Article  Google Scholar 

  9. Cuoco, D., Cvitanić, J.: Optimal consumption choices for a ‘large’ investor. J. Econ. Dyn. Control 22(3), 401–436 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cuoco, D., Liu, H.: A martingale characterization of consumption choices and hedging costs with margin requirements. Math. Finance 10(3), 355–385 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Czichowsky, C., Schweizer, M.: Convex duality in mean-variance hedging under convex trading constraints. Adv. Appl. Probab. 44(4), 1084–1112 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eeckhoudt, L., Gollier, C., Schlesinger, H.: Economic and Financial Decisions Under Risk. Princeton University Press, Princeton (2011)

    Book  Google Scholar 

  13. Ellersgaard, S., Tegnér, M.: Stochastic volatility for utility maximizers—a martingale approach. Int. J. Financ. Eng. 5(1), 1850007 (2018)

    Article  MathSciNet  Google Scholar 

  14. Goll, T., Kallsen, J.: Optimal portfolios for logarithmic utility. Stoch. Process. Appl. 89(1), 31–48 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goll, T., Kallsen, J., et al.: A complete explicit solution to the log-optimal portfolio problem. Ann. Appl. Probab. 13(2), 774–799 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gourio, F.: Disaster risk and business cycles. Am. Econ. Rev. 102(6), 2734–66 (2012)

    Article  Google Scholar 

  17. Heunis, A.J.: Utility maximization in a regime switching model with convex portfolio constraints and margin requirements: optimality relations and explicit solutions. SIAM J. Control. Optim. 53(4), 2608–2656 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Itskhoki, O., Moll, B.: Optimal development policies with financial frictions. Econometrica 87(1), 139–173 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jacod, J.: Intégrles stochastiques par rapporta une semimartingale vectorielle et changement de filtrations, sém. probab. xiv. Lect. Notes Math. 784, 161–172 (1980)

    Article  Google Scholar 

  20. Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes. Grundlehren der mathematischen Wissenschaften (Book 288). Springer (2002)

  21. Kallsen, J.: Optimal portfolios for exponential Lévy processes. Math. Methods Oper. Res. 51(3), 357–374 (2000)

    Article  MathSciNet  Google Scholar 

  22. Kallsen, J., Muhle-Karbe, J.: Utility maximization in affine stochastic volatility models. Int. J. Theor. Appl. Finance 13(3), 459–477 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kallsen, J., Muhle-Karbe, J.: Utility maximization in models with conditionally independent increments. Ann. Appl. Probab. 20(6), 2162–2177 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Karatzas, I., Shreve, S.: Methods of Mathematical Finance, vol. 39. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  25. Karatzas, I., Žitković, G., et al.: Optimal consumption from investment and random endowment in incomplete semimartingale markets. Ann. Probab. 31(4), 1821–1858 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Klein, I., Rogers, L.C.G.: Duality in optimal investment and consumption problems with market frictions. Math. Finance 17(2), 225–247 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kramkov, D., Schachermayer, W.: Necessary and sufficient conditions in the problem of optimal investment in incomplete markets. Ann. Appl. Probab. 13, 1504–1516 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Labbé, C., Heunis, A.J.: Conjugate duality in problems of constrained utility maximization. Stochastics 81(6), 545–565 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lakner, P.: Utility maximization with partial information. Stoch. Process. Appl. 56(2), 247–273 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lakner, P.: Optimal trading strategy for an investor: the case of partial information. Stoch. Process. Appl. 76(1), 77–97 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Long, N.T.: Investment optimization under constraints. Math. Methods Oper. Res. 60(2), 175–201 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Longstaff, F.A., Piazzesi, M.: Corporate earnings and the equity premium. J. Financ. Econ. 74(3), 401–421 (2004)

    Article  Google Scholar 

  33. Michelbrink, D., Le, H.: A martingale approach to optimal portfolios with jump-diffusions. SIAM J. Control. Optim. 50(1), 583–599 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mnif, M., Pham, H.: Stochastic optimization under constraints. Stoch. Process. Appl. 93(1), 149–180 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mostovyi, O.: Necessary and sufficient conditions in the problem of optimal investment with intermediate consumption. Finance Stoch. 19(1), 135–159 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Munk, C., Sørensen, C.: Optimal consumption and investment strategies with stochastic interest rates. J. Bank. Finance 28(8), 1987–2013 (2004)

    Article  Google Scholar 

  37. Nutz, M.: The opportunity process for optimal consumption and investment with power utility. Math. Financ. Econ. 3(3–4), 139–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Posch, O.: Structural estimation of jump-diffusion processes in macroeconomics. J. Econom. 153(2), 196–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Posch, O., Trimborn, T.: Numerical solution of dynamic equilibrium models under poisson uncertainty. J. Econ. Dyn. Control 37(12), 2602–2622 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Roche, H.: Stochastic growth: a duality approach. J. Econ. Theory 113(1), 131–143 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schroder, M., Skiadas, C.: Optimality and state pricing in constrained financial markets with recursive utility under continuous and discontinuous information. Math. Finance 18(2), 199–238 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tehranchi, M.: Explicit solutions of some utility maximization problems in incomplete markets. Stoch. Process. Appl. 114(1), 109–125 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Touzi, N.: Optimal insurance demand under marked point processes shocks. Ann. Appl. Probab. 10, 283–312 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tsai, J., Wachter, J.A.: Disaster risk and its implications for asset pricing. Annu. Rev. Financ. Econ. 7, 219–252 (2015)

    Article  Google Scholar 

  45. Wälde, K.: Endogenous growth cycles. Int. Econ. Rev. 46(3), 867–894 (2005)

    Article  MathSciNet  Google Scholar 

  46. Wälde, K.: Production technologies in stochastic continuous time models. J. Econ. Dyn. Control 35(4), 616–622 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, C., Wang, N., Yang, J.: Optimal consumption and savings with stochastic income and recursive utility. J. Econ. Theory 165, 292–331 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, N.: An equilibrium model of wealth distribution. J. Monet. Econ. 54(7), 1882–1904 (2007)

    Article  Google Scholar 

  49. Zhang, A.: A closed-form solution for the continuous-time consumption model with endogenous labor income. Decis. Econ. Finan. 33(2), 149–167 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Žitković, G., et al.: Utility maximization with a stochastic clock and an unbounded random endowment. Ann. Appl. Probab. 15(1B), 748–777 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the associate editor and anonymous referees for the detailed comments and suggestions that helped in writing this paper. Part of this research was done while the second author was invited to the Dale T. Mortensen Center (DTMC) at Aarhus University. He wants to thank Bent Jesper Christensen, Juan Carlos Parra-Alvarez and the DTMC for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Serrano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

We prove first part (b). Since \(Y_0^{x,\hat{\varphi }}/H_0^{\hat{\varphi }}=\mathcal {X}^{\varphi }(\mathcal {Y}^{\varphi }(x))=x,\) it suffices to show that \(Y^{x,\hat{\varphi }}/H^{\hat{\varphi }}\) satisfies the wealth equation (9) for the pair \((\hat{\pi },\hat{\gamma }).\)

Using Itô’s formula for semi-martingales (see e.g. Theorem 4.57 in Jacod and Shiryaev [20, Ch. I]) the differential of \(1/H^{\hat{\varphi }}\) satisfies

$$\begin{aligned} d\Bigl (\frac{1}{H_t}\Bigr )&=\frac{-1}{H_{t-}^2}\,dH_t+\frac{1}{2}\frac{2}{H_{t-}^3}\,d\left\langle H^\mathsf {c}\right\rangle _t\\&\quad +\frac{1}{H_{t-}}{\int _{\mathbb {R}^d}\Bigl [\frac{1}{\hat{\varphi }^2(t,y)}-1+(\hat{\varphi }^2(t,y)-1)\Bigr ]\,\mu (dy,dt)}\\&=\frac{1}{H_{t-}}\left\{ [r_t+\tilde{g}_K(t,\hat{\zeta }_t)+{\varphi ^1_t\cdot a_t\varphi ^1_t}]\,dA_t-\varphi ^1_t\cdot dX_t^{\mathsf {c}}-\int _{\mathbb {R}^d}(\varphi ^2(t,y)-1)\,\tilde{\mu }(dy,dt)\right. \\&\quad +\left. \int _{\mathbb {R}^d}\Bigl [\frac{1}{\hat{\varphi }^2(t,y)}-1+(\hat{\varphi }^2(t,y)-1)\Bigr ]\,\mu (dy,dt)\right\} \\&=\frac{1}{H_{t-}}\left\{ \Bigl [r_t+\tilde{g}_K(t,\hat{\zeta }_t)+\varphi ^1_t\cdot a_t\varphi ^1_t+\int _{\mathbb {R}^d}(\varphi ^2(t,y)-1)\,\nu _t(dy)\Bigr ]\,dA_t-\varphi ^1_t\cdot dX_t^{\mathsf {c}}\right. \\&\quad +\left. {\int _{\mathbb {R}^d}\Bigl [\frac{1}{\hat{\varphi }^2(t,y)}-1\Bigr ]\,\mu (dy,dt)}\right\} \end{aligned}$$

From (19), the differential of \(Y^{x,\hat{\varphi }}\) is given by

$$\begin{aligned} dY_t^{x,\hat{\varphi }}=-H_t^{\hat{\varphi }}\gamma _t^{x,\hat{\varphi }}\,d{\kappa _t}+\alpha _t^{x,\varphi }\cdot dX_t^{\mathsf {c}}+\int _{\mathbb {R}^d}\beta ^{x,\hat{\varphi }}(t,y)\,\tilde{\mu }(dy,dt) \end{aligned}$$

Using the product rule for semimartingales, we have

$$\begin{aligned}&d\biggl (\frac{Y_t^{x,\hat{\varphi }}}{H_t^{\hat{\varphi }}}\biggr )=Y_{t-}^{x,\hat{\varphi }}\,d\Bigl (\frac{1}{H_t^{\hat{\varphi }}}\Bigr ) +\frac{1}{H_{t-}^{\hat{\varphi }}}\,dY_t^{x,\hat{\varphi }}+d\Bigl \langle Y^{x,\hat{\varphi },\mathsf {c}},\frac{1}{H^{\hat{\varphi },\mathsf {c}}}\Bigr \rangle _t\\&\qquad +\frac{1}{H_{t-}^{\hat{\varphi }}}\int _{\mathbb {R}^d}\beta ^{x,\hat{\varphi }}(t,y)\Bigl [\frac{1}{\hat{\varphi }^2(t,y)}-1\Bigr ]\,\mu (dy,dt)\\\\&\quad =\frac{Y_{t-}^{x,\hat{\varphi }}}{H_{t-}^{\hat{\varphi }}}\left\{ \Bigl [r_t+\tilde{g}_K(t,\hat{\zeta }_t)+\varphi ^1_t\cdot a_t\varphi ^1_t+\int _{\mathbb {R}^d}(\varphi ^2(t,y)-1)\,\nu _t(dy)\Bigr ]\,dA_t-\varphi ^1_t\cdot dX_t^{\mathsf {c}}\right. \\&\qquad +\left. \int _{\mathbb {R}^d}\Bigl [\frac{1}{\hat{\varphi }^2(t,y)}-1\Bigr ]\,\mu (dy,dt)\right\} -\gamma _t^{x,\hat{\varphi }}\,d{\kappa _t}+\frac{1}{H_{t-}^{\hat{\varphi }}}\Bigl \{\alpha _t^{x,\varphi }\cdot dX_t^{\mathsf {c}}\Bigr .\\&\qquad +\int _{\mathbb {R}^d}\beta ^{x,\hat{\varphi }}(t,y)\,\tilde{\mu }(dy,dt)-\alpha _t^{x,\hat{\varphi }}\cdot a_t\varphi _t^1\,dA_t\\&\qquad +\Bigl .\int _{\mathbb {R}^d}\beta ^{x,\hat{\varphi }}(t,y)\Bigl [\frac{1}{\hat{\varphi }^2(t,y)}-1\Bigr ]\,\mu (dy,dt)\Bigr \} \end{aligned}$$

Multiplying and dividing by \(Y_{t-}^{x,\hat{\varphi }}\) in the last bracket and using conditions (20) and (21), we obtain

$$\begin{aligned}&d\biggl (\frac{Y_t^{x,\hat{\varphi }}}{H_t^{\hat{\varphi }}}\biggr ) =\frac{Y_{t-}^{x,\hat{\varphi }}}{H_{t-}^{\hat{\varphi }}}\left\{ \Bigl [r_t+\tilde{g}_K(t,\zeta ^{\hat{\varphi }}_t)+\Bigl [\varphi ^1_t-\frac{1}{Y_{t-}^{x,\hat{\varphi }}}\alpha ^{x,\hat{\varphi }}_t\Bigr ]\cdot a_t\varphi ^1_t\Bigr .\right. \\&\qquad +\Bigl .\int _{\mathbb {R}^d}\Bigl (\varphi ^2(t,y)-1-\frac{\beta ^{x,\hat{\varphi }}(t,y)}{Y_{t-}^{x,\hat{\varphi }}}\Bigr )\,\nu _t(dy)\Bigr ]\,dA_t +\Bigl [\frac{\alpha ^{x,\hat{\varphi }}_t}{Y_{t-}^{x,\hat{\varphi }}}-\varphi _t^1\Bigr ]\cdot dX_t^{\mathsf {c}}\\&\qquad \left. +\int _{\mathbb {R}^d}\Bigl (\frac{1}{\hat{\varphi }^2(t,y)}-1+\frac{\beta ^{x,\hat{\varphi }}(t,y)}{\hat{\varphi }^2(t,y)Y_{t-}^{x,\hat{\varphi }}}\Bigr )\,\mu (dy,dt)\right\} -\gamma _t^{x,\hat{\varphi }}\,d\kappa _t\\&\quad =\frac{Y_{t-}^{x,\hat{\varphi }}}{H_{t-}^{\hat{\varphi }}}\biggl \{\Bigl [r_t+\tilde{g}_K(t,\zeta ^{\hat{\varphi }}_t)-\hat{\pi }_t\cdot a_t\varphi ^1_t-\hat{\pi }_t\int _{\mathbb {R}^d}(e^y-\underline{1})\varphi ^2(t,y)\nu _t(dy)\Bigr ]\,dA_t\biggr .\\&\qquad +\hat{\pi }_t\cdot dX_t^{\mathsf {c}}+\biggl .\hat{\pi }_t\cdot \int _{\mathbb {R}^d}(e^y-\underline{1})\,\mu (dy,dt)\biggr \} -\gamma _t^{x,\hat{\varphi }}\,d\kappa _t \end{aligned}$$

Finally, we add and subtract \(\hat{\pi }_t\cdot \left[ r_t\underline{1}-b_t-\frac{1}{2}\mathrm {diag}[a_t]-\int _{\mathbb {R}^d}h(y)\,\nu _t(dy)\right] \) in the \(dA_t\) term, and use the definition (12) of \(\hat{\zeta }=\zeta ^{\hat{\varphi }}\) and condition (22) to get

$$\begin{aligned} d\biggl (\frac{Y_t^{x,\hat{\varphi }}}{H_t^{\hat{\varphi }}}\biggr )&=\frac{Y_{t-}^{x,\hat{\varphi }}}{H_{t-}^{\hat{\varphi }}}\left\{ \Bigl [r_t+\tilde{g}_K(t,\hat{\zeta }_t)+\hat{\pi }_t\cdot \hat{\zeta }_t\Bigr .\right. \\&\quad -\left. \Bigl .\hat{\pi }_t\cdot \left( r_t\underline{1}-b_t-\frac{1}{2}\mathrm {diag}[a_t]-\int _{\mathbb {R}^d}h(y)\,\nu _t(dy)\right) \Bigr ]\,dA_t\right. \\&\quad +\biggl .\,\hat{\pi }_t\cdot dX_t^{\mathsf {c}}+\hat{\pi }_t\cdot \int _{\mathbb {R}^d}(e^y-\underline{1})\,\mu (dy,dt)\biggr \}-\gamma _t^{x,\hat{\varphi }}\,d\kappa _t\\&=\frac{Y_{t-}^{x,\hat{\varphi }}}{H_{t-}^{\hat{\varphi }}}\biggl \{\Bigl [r_t+g(t,\hat{\pi }_t)\Bigr .\biggr .\\&\quad \left. \Bigl .+\pi _t\cdot \Bigl (b_t+\frac{1}{2}\,\mathrm {diag}[a_t]-r_t\underline{1}+\int _{\left| y\right| \le 1}(e^y-y-\underline{1})\,\nu _t(dy)\Bigr )\Bigr ]\,dA_t\right. \\&\quad +\biggl .\pi _t\cdot \Bigl [dX_t^{\mathsf {c}}+\int _{\left| y\right| \le 1}(e^{y}-\underline{1})\,\tilde{\mu }(dy,dt)+\int _{\left| y\right| > 1}(e^{y}-\underline{1})\,\mu (dy,dt)\Bigr ]\biggr \}-\gamma _t^{x,\hat{\varphi }}\,d\kappa _t \end{aligned}$$

Hence, \(Y^{x,\hat{\varphi }}/{H^{\hat{\varphi }}}\) solves the wealth equation (9). Part (b) follows by uniqueness of solution to Eq. (9). This in turn implies optimality of \((\hat{\pi },\hat{\gamma }).\) The proof of \((\hat{\pi },\hat{\gamma })\in \tilde{\mathcal {A}}(x)\) is the same as the proof of part (ii) of Lemma 1 in Michelbrik and Le [33]. Part (c) follows easily since \(\vartheta (x)=\tilde{\vartheta }(x)=J(\hat{\gamma }).\) \(\square \)

Lemma 3

Let \(x,z\ge 0\) be fixed. Suppose \(U'''>0\) (resp. \(<0\)) and \(z>1\) (resp. \(z<1\)). Then

$$\begin{aligned} I(U'(x)z)-x+\frac{1}{\mathrm {AR}(x)}(z-1)>0. \end{aligned}$$

Proof

Define \(f(\lambda ):=I(U'(x)\lambda ).\) Suppose \(U'''>0\) and \(z>1.\) By the the mean value theorem, there exists \(z^*\in (1,z)\) such that

$$\begin{aligned} \frac{f(z)-f(1)}{z-1}=f'(z^*)=I'(U'(x)z^*)U'(x)=\frac{U'(x)}{U''(I(U'(x)z^*))}. \end{aligned}$$

Since I is decreasing and \(U''\) is increasing, we have \(I(U'(x)z^*)<I(U'(x))=x\) and

$$\begin{aligned} U''(I(U'(x)z^*))<U''(x) \end{aligned}$$

and the desired result follows. The same argument can be used if \(z\in (0,1)\) and \(U''\) is decreasing. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junca, M., Serrano, R. Utility maximization in a multidimensional semimartingale model with nonlinear wealth dynamics. Math Finan Econ 15, 775–809 (2021). https://doi.org/10.1007/s11579-021-00296-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-021-00296-z

Keywords

JEL Classification

Navigation