Skip to main content
Log in

(C5H9N2)[BiI4]: A One-Dimensional Bismuth-Based Organic–Inorganic Hybrid Material for Fast Rhodamine B Degradation Under Dark Condition

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Lead-free organic–inorganic hybrid materials have attracted wide interest due to their excellent optoelectronic and photovoltaic properties. Herein, we synthesized a Bi-based hybrid material with one-dimensional (1D) Bi-I anionic chains, namely, (C5H9N2)[BiI4] (1) by solvothermal method. Single-crystal X-ray diffraction analysis reveals that it crystallizes in monoclinic space group of C2/c with the cell parameters a = 15.539(13) Å, b = 13.860(12) Å, c = 7.789(6) Å, β = 117.02(2)o, V = 1494(2) Å3, and Z = 4, which is composed of protonated 1,3-dimethylimidazolium cations and one-dimensional (1D) [BiI4] chains interconnected via edge-sharing μ2-I. This compound exhibits fast degradation of rhodamine B (RhB) at room temperature under dark condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Senthilkumar, G. Gnanapragasam, V. Arutchelvan, and S. Nagarajan (2011). Chem. Eng. J. 166, 10–14.

    Article  CAS  Google Scholar 

  2. B.-M. Bresolin, S. B. Hammouda, and M. Sillanpää (2019). J. Photoch. Photobio A 376, 116–126.

    Article  CAS  Google Scholar 

  3. C. A. Martinez-Huitle and E. Brillas (2009). Appl. Catal. B-Environ. 87, 105–145.

    Article  CAS  Google Scholar 

  4. Y. L. Zhao, S. C. Kang, L. Qin, W. Wang, T. T. Zhang, S. X. Song, and S. Komarneni (2020). Chem. Eng. J. 379, 122322.

    Article  CAS  Google Scholar 

  5. L. Bulgariu, L. B. Escudero, O. S. Bello, M. Iqbal, J. Nisar, K. A. Adegoke, F. Alakhras, M. Kornaros, and I. Anastopoulos (2019). J. Mol. Liq. 276, 728–747.

    Article  CAS  Google Scholar 

  6. Z. Liang, C. F. Yan, S. Rtimi, and J. Bandara (2019). Appl. Catal. B-Environ. 241, 256–269.

    Article  CAS  Google Scholar 

  7. S. A. Ong, L. N. Ho, and Y. S. Wong (2015). Desalin. Water Treat. 54, 557–561.

    Article  CAS  Google Scholar 

  8. S. Zhang, Y. Liu, P. C. Gu, R. Ma, T. Wen, G. X. Zhao, L. Li, Y. J. Ai, C. Hu, and X. K. Wang (2019). Appl. Catal. B-Environ. 248, 1–10.

    Article  CAS  Google Scholar 

  9. D. W. Liu, S. H. Guo, Q. Zheng, and R. J. Sa (2020). Chem. Phys. Lett. 761, 138020.

    Article  CAS  Google Scholar 

  10. Y. Zhao and K. Zhu (2016). Chem. Soc. Rev. 45, 655–689.

    Article  CAS  PubMed  Google Scholar 

  11. F. Duarte, F. J. Maldonado-Hodar, and L. M. Madeira (2013). Appl. Catal. B-Environ. 129, 264–272.

    Article  CAS  Google Scholar 

  12. S. S. Wang, Z. Wu, J. Chen, J. P. Ma, J. S. Ying, S. C. Cui, S. G. Yu, Y. M. Hu, J. H. Zhao, and Y. M. Jia (2019). Ceram. Int. 45, 11703–11708.

    Article  CAS  Google Scholar 

  13. X. Huang, Y. H. Wang, Y. K. Weng, Z. H. Yang, and S. Dong (2020). Phys. Rev. Mater. 4, 104601.

    Article  CAS  Google Scholar 

  14. F. Giustino and H. J. Snaith (2016). Acs Energy Lett. 1, 1233–1240.

    Article  CAS  Google Scholar 

  15. S. L. Zhang, R. C. Xu, Z. D. Li, Q. W. Zhang, L. Cheng, Z. H. Wang, and C. L. Fu (2019). J. Adv. Dielectr. 9, 1950013.

    Article  CAS  Google Scholar 

  16. X. J. Zheng, W. Zhao, P. Wang, H. R. Tan, M. I. Saidaminov, S. J. Tie, L. G. Chen, Y. F. Peng, J. D. Long, and W. H. Zhang (2020). J. Energy. Chem. 49, 299–306.

    Article  Google Scholar 

  17. Y. Zhang, F. Fadaei Tirani, P. Pattison, K. Schenk-Joss, Z. W. Xiao, M. K. Nazeeruddin, and P. Gao (2020). Dalton 49, 5815–5822.

    Article  CAS  Google Scholar 

  18. R. L. Zhang, X. Mao, Y. Yang, S. Q. Yang, W. Y. Zhao, T. Wumaier, D. H. Wei, W. Q. Deng, and K. L. Han (2019). Angew. Chem. Int. Ed. 58, 2725–2729.

    Article  CAS  Google Scholar 

  19. H. J. Yang, T. Cai, E. X. Liu, K. Hills-Kimball, J. B. Gao, and O. Chen (2020). Nano Res. 13, 282–291.

    Article  CAS  Google Scholar 

  20. M. Scholz, M. Morgenroth, K. Oum, and T. Lenzer (2018). J. Phys. Chem. C 122, 5854–5863.

    Article  CAS  Google Scholar 

  21. S. A. Adonin, M. N. Sokolov, and V. P. Fedin (2017). Russ. J. Inorg. Chem. 62, 1789–1796.

    Article  CAS  Google Scholar 

  22. A. N. Usoltsev, S. A. Adonin, P. A. Abramov, M. N. Sokolov, and V. P. Fedin (2018). Russ. J. coord. Chem. 44, 772–778.

    Article  CAS  Google Scholar 

  23. R. Jakubas, A. Ga Gor, M. J. Winiarski, M. Ptak, A. Piecha-Bisiorek, and A. Cizman (2020). Inorg. chem. 59, 3417–3427.

    Article  CAS  PubMed  Google Scholar 

  24. S. A. Adonin, M. N. Sokolov, and V. P. Fedin (2016). Coord. Chem. Rev. 312, 1–21.

    Article  CAS  Google Scholar 

  25. N. Mercier, N. Louvain, and W. Bi (2009). CrystEngComm 11, 720–734.

    Article  CAS  Google Scholar 

  26. I. D. Gorokh, S. A. Adonin, D. G. Samsonenko, M. N. Sokolov, and V. P. Fedin (2018). Russ. J. coord. Chem. 44, 502–506.

    Article  CAS  Google Scholar 

  27. S. A. Adonin, I. D. Gorokh, A. S. Novikov, A. N. Usoltsev, M. N. Sokolov, and V. P. Fedin (2019). Inorg. Chem. Commun. 103, 72–74.

    Article  CAS  Google Scholar 

  28. A. N. Usoltsev, M. Elshobaki, S. A. Adonin, L. A. Frolova, T. Derzhavskaya, P. A. Abramov, D. V. Anokhin, I. V. Korolkov, S. Y. Luchkin, N. N. Dremova, K. J. Stevenson, M. N. Sokolov, V. P. Fedinad, and P. A. Troshin (2019). J. Mater. Chem. A 7, 5957–5966.

    Article  CAS  Google Scholar 

  29. S. A. Adonin, I. D. Gorokh, D. G. Samsonenko, O. V. Antonova, I. V. Korolkov, A. N. Usoltsev, M. N. Sokolov, and V. P. Fedin (2018). Inorg. Chim. Acta 469, 32–37.

    Article  CAS  Google Scholar 

  30. Y. Q. Hu, H. Y. Hui, W. Q. Lin, H. Q. Wen, D. S. Yang, and G. D. Feng (2019). Inorg. Chem. 58, 16346–16353.

    Article  CAS  PubMed  Google Scholar 

  31. B. K. Singh, M. K. Chaudhari, and P. C. Pandey (2016). J. Lightwave Technol. 34, 2431–2438.

    Article  Google Scholar 

  32. D. D. Dashitsyrenova, S. A. Adonin, I. D. Gorokh, O. A. Kraevaya, A. V. Pavlova, P. A. Abramov, L. A. Frolova, M. N. Sokolov, V. P. Fedin, and P. A. (2020). Chem. Commun. 56, 9162–9165.

    Article  CAS  Google Scholar 

  33. K. B. Chu, J. L. Xie, W. J. Chen, W. X. Lu, J. L. Song, and C. Zhang (2018). Polyhedron 151, 146–151.

    Article  CAS  Google Scholar 

  34. W. J. Chen, K. B. Chu, and J. L. Song (2018). Acta crystallogr. C Struct. Chem. 74, 1744–1749.

    Article  CAS  PubMed  Google Scholar 

  35. A. Gągor, M. Węcławik, B. Bondzior, and R. Jakubas (2015). Crystengcomm 17, 3286–3296.

    Article  CAS  Google Scholar 

  36. C. Hrizi, N. Chaari, Y. Abid, N. Chniba-Boudjada, and S. Chaabouni (2012). Polyhedron 46, 41–46.

    Article  CAS  Google Scholar 

  37. N. A. Yelovik, A. V. Mironov, M. A. Bykov, A. N. Kuznetsov, A. V. Grigorieva, Z. Wei, E. V. Dikarev, and A. V. Shevelkov (2016). Inorg. Chem. 55, 4132–4140.

    Article  CAS  PubMed  Google Scholar 

  38. P. S. Halasyamani (2004). Chem. Mater. 16, 3586–3592.

    Article  CAS  Google Scholar 

  39. M. A. Moyet, S. M. Kanan, H. M. Varney, N. Abu-Farha, D. B. Gold, W. J. Lain, R. D. Pike, and H. H. Patterson (2019). Res. Chem. Intermediat. 45, 5919–5933.

    Article  CAS  Google Scholar 

  40. L. H. Li, O. Y. Kontsevoi, and A. J. Freeman (2014). Phys. Rev. B 90, 195203.

    Article  CAS  Google Scholar 

  41. H. Ferjani, R. Bechaieb, W. A. El-Fattah, and M. Fettouhi (2020). Spectrochim Acta A. 237, 118354.

    Article  CAS  Google Scholar 

  42. J. Jiang, L. Z. Zhang, H. Li, W. W. He, and J. J. Yin (2013). Nanoscale 5, 10573–10581.

    Article  CAS  PubMed  Google Scholar 

  43. L. H. Yu, X. Y. Zhang, G. W. Li, Y. T. Cao, Y. Shao, and D. Z. Li (2016). Appl. Catal. B-Environ. 187, 301–309.

    Article  CAS  Google Scholar 

  44. J. Y. Li, C. X. Zhao, F. J. Lan, F. Chen, C. L. Teng, Q. Y. Yan, and J. T. Tang (2016). Catal. Commun. 77, 26–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would thank the National Natural Science Foundation of China (No. 21975106 and 21403232), MOE & SAFEA for 111 Project (B13025) for financial support and we thank for the instrument support of the central laboratory central laboratory, school of chemical and material engineering, Jiangnan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Ling Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 693 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, DS., Chu, KB., Zhou, LL. et al. (C5H9N2)[BiI4]: A One-Dimensional Bismuth-Based Organic–Inorganic Hybrid Material for Fast Rhodamine B Degradation Under Dark Condition. J Clust Sci 33, 1205–1210 (2022). https://doi.org/10.1007/s10876-021-02055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02055-y

Keywords

Navigation