Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 10, 2019

Fractional calculus and generalized forms of special polynomials associated with Appell sequences

  • Subuhi Khan EMAIL logo and Shahid Ahmad Wani

Abstract

In this article, an operational definition, generating function, explicit summation formula, determinant definition and recurrence relations of the generalized families of Hermite–Appell polynomials are derived by using integral transforms and some known operational rules. An analogous study of these results is also carried out for the generalized forms of the Hermite–Bernoulli and Hermite–Euler polynomials.

MSC 2010: 26A33; 33B10; 33C45

References

[1] P. Appell, Sur une classe de polynômes, Ann. Sci. Éc. Norm. Supér. (2) 9 (1880), 119–144. 10.24033/asens.186Search in Google Scholar

[2] P. Appell and J. Kampé de Fériet, Fonctions hypergéométriques et hypersphériques. Polynômes d’Hermite, Gauthier-Villars, Paris, 1926. Search in Google Scholar

[3] F. Costabile, F. Dell’Accio and M. I. Gualtieri, A new approach to Bernoulli polynomials, Rend. Mat. Appl. (7) 26 (2006), no. 1, 1–12. Search in Google Scholar

[4] F. A. Costabile and E. Longo, A determinantal approach to Appell polynomials, J. Comput. Appl. Math. 234 (2010), no. 5, 1528–1542. 10.1016/j.cam.2010.02.033Search in Google Scholar

[5] G. Dattoli, Generalized polynomials, operational identities and their applications, J. Comput. Appl. Math. 118 (2000), no. 1–2, 111–123. 10.1016/S0377-0427(00)00283-1Search in Google Scholar

[6] G. Dattoli, Hermite–Bessel and Laguerre–Bessel functions: A by-product of the monomiality principle, Advanced Special Functions and Applications (Melfi 1999), Proc. Melfi Sch. Adv. Top. Math. Phys. 1, Aracne, Rome (2000), 147–164. Search in Google Scholar

[7] G. Dattoli, Summation formulae of special functions and multivariable Hermite polynomials, Nuovo Cimento Soc. Ital. Fis. B 119 (2004), no. 5, 479–488. Search in Google Scholar

[8] G. Dattoli, P. E. Ricci, C. Cesarano and L. Vázquez, Special polynomials and fractional calculus, Math. Comput. Modelling 37 (2003), no. 7–8, 729–733. 10.1016/S0895-7177(03)00080-3Search in Google Scholar

[9] C. Hermite, Sur un nouveau dévelopment en séries de functions, Compt. Rend. Acad. Sci. Paris 58 (1864), 93–100. Search in Google Scholar

[10] S. Khan, M. W. Al-Saad and R. Khan, Laguerre-based Appell polynomials: Properties and applications, Math. Comput. Modelling 52 (2010), no. 1–2, 247–259. 10.1016/j.mcm.2010.02.022Search in Google Scholar

[11] S. Khan and N. Raza, Families of Legendre-Sheffer polynomials, Math. Comput. Modelling 55 (2012), no. 3–4, 969–982. 10.1016/j.mcm.2011.09.023Search in Google Scholar

[12] S. Khan and N. Raza, General-Appell polynomials within the context of monomiality principle, Int. J. Anal. 2013 (2013), Article ID 328032. 10.1155/2013/328032Search in Google Scholar

[13] S. Khan, G. Yasmin and N. Ahmad, A note on truncated exponential-based Appell polynomials, Bull. Malays. Math. Sci. Soc. 40 (2017), no. 1, 373–388. 10.1007/s40840-016-0343-1Search in Google Scholar

[14] S. Khan, G. Yasmin, R. Khan and N. A. Makboul Hassan, Hermite-based Appell polynomials: Properties and applications, J. Math. Anal. Appl. 351 (2009), no. 2, 756–764. 10.1016/j.jmaa.2008.11.002Search in Google Scholar

[15] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd. enlarged ed., Grundlehren Math. Wiss. 52, Springer, New York, 1966. 10.1007/978-3-662-11761-3Search in Google Scholar

[16] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood Ser. Math. Appl., Ellis Horwood, Chichester, 1984. Search in Google Scholar

Received: 2017-08-03
Accepted: 2017-12-06
Published Online: 2019-05-10
Published in Print: 2021-04-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/gmj-2019-2028/html
Scroll to top button