Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 11, 2021

Energy Contraction and Optimal Convergence of Adaptive Iterative Linearized Finite Element Methods

  • Pascal Heid ORCID logo EMAIL logo , Dirk Praetorius ORCID logo and Thomas P. Wihler ORCID logo

Abstract

We revisit a unified methodology for the iterative solution of nonlinear equations in Hilbert spaces. Our key observation is that the general approach from [P. Heid and T. P. Wihler, Adaptive iterative linearization Galerkin methods for nonlinear problems, Math. Comp. 89 2020, 326, 2707–2734; P. Heid and T. P. Wihler, On the convergence of adaptive iterative linearized Galerkin methods, Calcolo 57 2020, Paper No. 24] satisfies an energy contraction property in the context of (abstract) strongly monotone problems. This property, in turn, is the crucial ingredient in the recent convergence analysis in [G. Gantner, A. Haberl, D. Praetorius and S. Schimanko, Rate optimality of adaptive finite element methods with respect to the overall computational costs, preprint 2020]. In particular, we deduce that adaptive iterative linearized finite element methods (AILFEMs) lead to full linear convergence with optimal algebraic rates with respect to the degrees of freedom as well as the total computational time.

Award Identifier / Grant number: 200021_182524

Funding source: Austrian Science Fund

Award Identifier / Grant number: SFB F65

Award Identifier / Grant number: P33216

Funding statement: The authors acknowledge the financial support of the Swiss National Science Foundation (SNF), Grant No. 200021_182524, and of the Austrian Science Fund (FWF) Grant No. SFB F65 and P33216.

References

[1] M. Amrein and T. P. Wihler, An adaptive Newton-method based on a dynamical systems approach, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), no. 9, 2958–2973. 10.1016/j.cnsns.2014.02.010Search in Google Scholar

[2] M. Amrein and T. P. Wihler, Fully adaptive Newton–Galerkin methods for semilinear elliptic partial differential equations, SIAM J. Sci. Comput. 37 (2015), no. 4, A1637–A1657. 10.1137/140983537Search in Google Scholar

[3] M. Arioli, E. H. Georgoulis and D. Loghin, Stopping criteria for adaptive finite element solvers, SIAM J. Sci. Comput. 35 (2013), no. 3, A1537–A1559. 10.1137/120867421Search in Google Scholar

[4] R. Becker, S. Mao and Z. Shi, A convergent nonconforming adaptive finite element method with quasi-optimal complexity, SIAM J. Numer. Anal. 47 (2010), no. 6, 4639–4659. 10.1137/070701479Search in Google Scholar

[5] L. Belenki, L. Diening and C. Kreuzer, Optimality of an adaptive finite element method for the p-Laplacian equation, IMA J. Numer. Anal. 32 (2012), no. 2, 484–510. 10.1093/imanum/drr016Search in Google Scholar

[6] P. Binev, W. Dahmen and R. DeVore, Adaptive finite element methods with convergence rates, Numer. Math. 97 (2004), no. 2, 219–268. 10.21236/ADA640658Search in Google Scholar

[7] C. Carstensen, Convergence of an adaptive FEM for a class of degenerate convex minimization problems, IMA J. Numer. Anal. 28 (2008), no. 3, 423–439. 10.1093/imanum/drm034Search in Google Scholar

[8] C. Carstensen, Convergence of adaptive finite element methods in computational mechanics, Appl. Numer. Math. 59 (2009), no. 9, 2119–2130. 10.1016/j.apnum.2008.12.006Search in Google Scholar

[9] C. Carstensen, M. Feischl, M. Page and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl. 67 (2014), no. 6, 1195–1253. 10.1016/j.camwa.2013.12.003Search in Google Scholar PubMed PubMed Central

[10] C. Carstensen, D. Gallistl and M. Schedensack, Discrete reliability for Crouzeix–Raviart FEMs, SIAM J. Numer. Anal. 51 (2013), no. 5, 2935–2955. 10.1137/130915856Search in Google Scholar

[11] C. Carstensen and J. Gedicke, An adaptive finite element eigenvalue solver of asymptotic quasi-optimal computational complexity, SIAM J. Numer. Anal. 50 (2012), no. 3, 1029–1057. 10.1137/090769430Search in Google Scholar

[12] J. M. Cascon, C. Kreuzer, R. H. Nochetto and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), no. 5, 2524–2550. 10.1137/07069047XSearch in Google Scholar

[13] S. Congreve and T. P. Wihler, Iterative Galerkin discretizations for strongly monotone problems, J. Comput. Appl. Math. 311 (2017), 457–472. 10.1016/j.cam.2016.08.014Search in Google Scholar

[14] L. Diening, M. Fornasier, R. Tomasi and M. Wank, A relaxed Kačanov iteration for the p-Poisson problem, Numer. Math. 145 (2020), no. 1, 1–34. 10.1007/s00211-020-01107-1Search in Google Scholar

[15] L. Diening and C. Kreuzer, Linear convergence of an adaptive finite element method for the p-Laplacian equation, SIAM J. Numer. Anal. 46 (2008), no. 2, 614–638. 10.1137/070681508Search in Google Scholar

[16] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. 10.1137/0733054Search in Google Scholar

[17] L. El Alaoui, A. Ern and M. Vohralík, Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems, Comput. Methods Appl. Mech. Engrg. 200 (2011), no. 37–40, 2782–2795. 10.1016/j.cma.2010.03.024Search in Google Scholar

[18] A. Ern and M. Vohralík, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput. 35 (2013), no. 4, A1761–A1791. 10.1137/120896918Search in Google Scholar

[19] M. Feischl, T. Führer and D. Praetorius, Adaptive FEM with optimal convergence rates for a certain class of nonsymmetric and possibly nonlinear problems, SIAM J. Numer. Anal. 52 (2014), no. 2, 601–625. 10.1137/120897225Search in Google Scholar

[20] S. Funken, D. Praetorius and P. Wissgott, Efficient implementation of adaptive P1-FEM in Matlab, Comput. Methods Appl. Math. 11 (2011), no. 4, 460–490. 10.2478/cmam-2011-0026Search in Google Scholar

[21] G. Gantner, A. Haberl, D. Praetorius and B. Stiftner, Rate optimal adaptive FEM with inexact solver for nonlinear operators, IMA J. Numer. Anal. 38 (2018), no. 4, 1797–1831. 10.1093/imanum/drx050Search in Google Scholar

[22] G. Gantner, A. Haberl, D. Praetorius and S. Schimanko, Rate optimality of adaptive finite element methods with respect to the overall computational costs, preprint (2020), https://arxiv.org/abs/2003.10785. 10.1090/mcom/3654Search in Google Scholar

[23] E. M. Garau, P. Morin and C. Zuppa, Convergence of an adaptive Kačanov FEM for quasi-linear problems, Appl. Numer. Math. 61 (2011), no. 4, 512–529. 10.1016/j.apnum.2010.12.001Search in Google Scholar

[24] E. M. Garau, P. Morin and C. Zuppa, Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type, Numer. Math. Theory Methods Appl. 5 (2012), no. 2, 131–156. 10.4208/nmtma.2012.m1023Search in Google Scholar

[25] A. Haberl, D. Praetorius, S. Schimanko and M. Vohralik, Convergence and quasi-optimal cost of adaptive algorithms for nonlinear operators including iterative linearization and algebraic solver, Numer. Math. (2021), 10.1007/s00211-021-01176-w. 10.1007/s00211-021-01176-wSearch in Google Scholar

[26] P. Heid and T. P. Wihler, Adaptive iterative linearization Galerkin methods for nonlinear problems, Math. Comp. 89 (2020), no. 326, 2707–2734. 10.1090/mcom/3545Search in Google Scholar

[27] P. Heid and T. P. Wihler, On the convergence of adaptive iterative linearized Galerkin methods, Calcolo 57 (2020), Paper No. 24. 10.1007/s10092-020-00368-4Search in Google Scholar

[28] L. M. Kačanov, Variational methods of solution of plasticity problems, J. Appl. Math. Mech. 23 (1959), 880–883. 10.1016/0021-8928(59)90184-4Search in Google Scholar

[29] W. F. Mitchell, Adaptive refinement for arbitrary finite-element spaces with hierarchical bases, J. Comput. Appl. Math. 36 (1991), no. 1, 65–78. 10.1016/0377-0427(91)90226-ASearch in Google Scholar

[30] P. Morin, R. H. Nochetto and K. G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488. 10.1137/S0036142999360044Search in Google Scholar

[31] J. Nečas, Introduction to the theory of nonlinear elliptic equations, John Wiley, New York, 1986. Search in Google Scholar

[32] C.-M. Pfeiler and D. Praetorius, Dörfler marking with minimal cardinality is a linear complexity problem, Math. Comp. 89 (2020), no. 326, 2735–2752. 10.1090/mcom/3553Search in Google Scholar

[33] R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007), no. 2, 245–269. 10.1007/s10208-005-0183-0Search in Google Scholar

[34] A. Veeser, Convergent adaptive finite elements for the nonlinear Laplacian, Numer. Math. 92 (2002), no. 4, 743–770. 10.1007/s002110100377Search in Google Scholar

[35] E. H. Zarantonello, Solving functional equations by contractive averaging, Technical Report 160, Mathematics Research Center, Madison, 1960. Search in Google Scholar

[36] E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B, Springer, New York, 1990. 10.1007/978-1-4612-0981-2Search in Google Scholar

Received: 2021-01-10
Accepted: 2021-02-12
Published Online: 2021-03-11
Published in Print: 2021-04-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/cmam-2021-0025/html
Scroll to top button