Skip to main content
Log in

Convective Stability of a Net Mass Flow Through a Horizontal Porous Layer with Immobilization and Clogging

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Solutal convection in a horizontal layer filled with porous media with horizontal seepage of a mixture is investigated considering the solute immobilization and clogging. A flow through porous media is modelled within the standard Darcy–Boussinesq model, and the immobilization process is described by the mobile/immobile media (MIM) approach. To describe the clogging process, the present model takes into account and the dependence of media permeability on porosity within the Carman–Kozeny equation. The presence of immobile (or adsorbed) particles of the solute decreases the porosity of media, and porous media become less permeable. The variation of porosity is modelled by a linear function of solute concentration in the immobile phase. We consider the case of high solute concentrations, in which the immobilization is described by the nonlinear MIM (mobile/immobile media) model. As a result, it was shown that the immobilization leads to the stabilization of the homogeneous filtration regime and to slowing down of the perturbation dynamics. The stability maps were plotted in a wide range of system parameters. The results showed that for some specific value of clean media porosity the system becomes most unstable and dynamics of perturbations (frequency of oscillations) is most intensive. This value corresponds to the minimal effect of porosity change to variation of permeability due to the immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bories, S.A., Combarnous, M.A.: Natural convection in a sloping porous layer. JFM 57, 63–79 (1973)

    Article  Google Scholar 

  • Carman, P.C.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150 (1937)

    Google Scholar 

  • De Smedt, F., Wierenga, P.J.: Mass transfer in porous media with immobile water. J. Hydrol. 41, 59–67 (1979)

    Article  Google Scholar 

  • Deans, H.A.: A mathematical model for dispersion in the direction of flow in porous media. Soc. Petrol. Eng. J. 3, 49 (1963)

    Article  Google Scholar 

  • Elder, J.W.: Steady free convection in a porous medium heated from below. JFM 27, 29–48 (1967)

    Article  Google Scholar 

  • Elimelech, M., Gregory, J., Jia, X.: Particle Deposition and Aggregation: Measurement, Modelling and Simulation. Butterworth-Heinemann, Oxford (2013)

    Google Scholar 

  • Goldshtik, M.A., Stern, V.N.: Hydrodynamic Stability and Turbulence. Nauka, Novosibirsk (1977). (in Russian)

    Google Scholar 

  • Gouze, P., Melean, Y., Le Borgne, T., Dentz, M., Carrera, J.: Non-Fickian dispersion in porous media explained by heterogeneous microscale matrix diffusion. Water Resour. Res. 44, 11 (2008)

    Google Scholar 

  • Horton, C., Rogers, F.: Convection currents in a porous medium. J. Appl. Phys. 16, 367 (1945)

    Article  Google Scholar 

  • Kay, B.D., Elrick, D.E.: Adsorption and movement of lindane in soils. Soil Sci. 104, 314–322 (1967)

    Article  Google Scholar 

  • Klimenko, L.S., Maryshev, B.S.: Effect of solute immobilization on the stability problem within the fractional model in the solute analog of the Horton–Rogers–Lapwood problem. Eur. Phys. J. E 40, 104 (2017)

    Article  Google Scholar 

  • Klimenko, L.S., Maryshev, B.S.: Numerical simulation of microchannel blockage by the random walk method. Chem. Eng. J. 381, (2020)

    Article  Google Scholar 

  • Lapwood, E.R.: Convection of a fluid in a porous medium. Math. Proc. Camb. Philos. Soc. 44, 508–521 (1948)

    Article  Google Scholar 

  • Liang, Y., Wen, B., Hesse, M.A., DiCarlo, D.: Effect of dispersion on solutal convection in porous media. Geophys. Res. Lett. 45, 9690–9698 (2018)

    Article  Google Scholar 

  • Lindstrom, F.T., Haque, R., Freed, V.H., Boersma, L.: The movement of some herbicides in soils. Linear diffusion and convection of chemicals in soils. Environ. Sci Technol. 1, 561–565 (1967)

    Article  Google Scholar 

  • Martinez-Vertel, J.J., Villaquiran-Vargas, A.P., Villar-Garcia, A., Moreno-Diaz, D.F., Rodriguez-Castelblanco, A.X.: Polymer adsorption isotherms with NaCl and CaCl 2 on kaolinite substrates. DYNA 86, 66–73 (2019)

    Article  Google Scholar 

  • Maryshev, B.S.: The effect of sorption on linear stability for the solutal Horton–Rogers–Lapwood problem. Transp. Porous Media 109, 747 (2015)

    Article  Google Scholar 

  • Maryshev, B.: A Non-linear model for solute transport, accounting for sub-diffusive concentration decline and sorption saturation. Math. Model. Nat. Phenom. 11, 179–190 (2016)

    Article  Google Scholar 

  • Maryshev, B.S., Klimenko, L.S.: An effect of sorption on convective modes selection for solutal convection in a rectangular porous channel. Transp. Porous Media 127, 309 (2019)

    Article  Google Scholar 

  • Maryshev, B., Cartalade, A., Latrille, C., Neel, M.C.: Identifying space-dependent coefficients and the order of fractionality in fractional advection–diffusion equation. Transp. Porous Media 116, 53–71 (2017)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2017)

    Book  Google Scholar 

  • Parvan, A., Jafari, S., Rahnama, M., Raoof, A.: Insight into particle retention and clogging in porous media; a pore scale study using lattice Boltzmann method. Adv. Water Resour. 138, (2020)

    Article  Google Scholar 

  • Prats, M.: The effect of horizontal fluid flow on thermally induced convection currents in porous mediums. J. Geophys. Res. 71, 4835 (1966)

    Article  Google Scholar 

  • Roth, E.J., Gilbert, B., Mays, D.C.: Colloid deposit morphology and clogging in porous media: fundamental insights through investigation of deposit fractal dimension. Environ. Sci. Technol. 49, 12263 (2015)

    Article  Google Scholar 

  • Selim, H.M., Amacher, M.C.: Reactivity and Transport of Heavy Metals in Soils. CRC/lewis, Boca Raton (1997)

    Google Scholar 

  • Van Genuchten, MTh, Wierenga, P.J.: Mass transfer studies in sorbing porous media I. Analytical solutions. Soil Sci. Soc. Am. J. 40, 473 (1976)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation (Grant 20-11-20125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris S. Maryshev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Verification of the Numerical Calculations for the Case with Constant Permeability

The equation system for neutral perturbations (13) for the case of \(\kappa =\kappa _0=\kappa ^0=\mathrm{const}\) reads

$$\begin{aligned} -i\omega \left( C+Q\right)&= (\partial _y^2-k^2-ik \mathrm{Pe})C-\frac{ik}{\kappa }\varPsi ,\nonumber \\ (\partial _y^2-k^2) \varPsi&= -ik \mathrm{Rp}\kappa C,\nonumber \\ -i\omega Q&=aC\left( q_0-q^0\right) -\left( b+ac^0\right) Q,\nonumber \\ \varPsi \mid _{y=0,1}&=0, \quad C,Q \mid _{y=0,1}=0. \end{aligned}$$
(14)

For the limiting case of the saturated porous media (\(b\ll 1\) and \(Q=q_{C0}=\mathrm{const}\)), Eq. (14) after substitution (9) becomes

$$\begin{aligned} -i\omega C&= (\partial _y^2-k^2-ik \mathrm{Pe})C-\frac{ik}{\kappa }\varPsi ,\nonumber \\ (\partial _y^2-k^2) \varPsi&= -ik \mathrm{Rp}\kappa C,\nonumber \\ Q&=\mathrm{const}, \end{aligned}$$
(15)

and using the perturbations in form of \(C,\varPsi \sim \sin (n\pi y)\) the well-known solution Prats (1966) can be obtained

$$\begin{aligned} \omega&= k \mathrm{Pe} \nonumber \\ \mathrm{Rp}&= \frac{(n^2\pi ^2+k^2)^2}{k^2}. \end{aligned}$$
(16)

While for the limiting case of the convection with small initial concentration (\(C_0\ll \phi _0,q_0\)), Eq. (14) together with (10) correspond to

$$\begin{aligned} -i\omega \left( C+Q\right)&= (\partial _y^2-k^2-ik \mathrm{Pe})C-\frac{ik}{\kappa }\varPsi ,\nonumber \\ (\partial _y^2-k^2) \varPsi&= -ik \mathrm{Rp}\kappa C,\nonumber \\ -i\omega Q&=aq_{C0}C-bQ. \end{aligned}$$
(17)

The Eq. (14) can be reduced to one complex equation for \(Q,C,\varPsi \sim \sin (n\pi y)\) in the form of

$$\begin{aligned} -i\omega \left( 1+\frac{aq_{C0}}{b-i\omega }\right) -k^2\frac{\mathrm{Rp}}{n^2\pi ^2+k^2}+ikPe=-\pi ^2n^2-k^2, \end{aligned}$$
(18)

which is coincided with Eq. (10) in Maryshev (2015) up to replacement \(aq_{C0}\rightarrow a\).

Appendix B: The Case Without Adsorption

We shall rewrite solution Eq. (8) for the case \(a=0\) (the immobilization effect is excluded)

$$\begin{aligned} q^0&= 0,\nonumber \\ c^0&= y,\nonumber \\ p^0&= -x-\frac{\mathrm{Rp}}{2\mathrm{Pe}}y^2, \nonumber \\ u^0&= \kappa (\phi ^0)\mathrm{Pe}=\mathrm{const},\nonumber \\ \phi ^0&= \phi _0. \end{aligned}$$
(19)

Then, equations for normal neutral perturbations (13) are

$$\begin{aligned} -i\omega \left( C+Q\right)&= (\partial _y^2-k^2-ik \mathrm{Pe})C-\frac{ik}{\kappa _0}\varPsi \nonumber \\ (\partial _y^2-k^2) \varPsi&= -ik \mathrm{Rp}\kappa _0 C,\nonumber \\ q-i\omega Q&=-ayQ. \end{aligned}$$
(20)

The last equation has only trivial solution: \(Q=0\). Thus, substitution of \(C, \varPsi \sim \sin {\pi y}\) gives

$$\begin{aligned} (i\omega -\pi ^2-k^2-ik \mathrm{Pe})C-\frac{ik}{\kappa _0}\varPsi&=0\nonumber \\ ik \mathrm{Rp}\kappa _0 C-(\pi ^2+k^2) \varPsi&=0. \end{aligned}$$
(21)

Finally,

$$\begin{aligned} \omega&= k \mathrm{Pe} \nonumber \\ \mathrm{Rp}&= \frac{(\pi ^2+k^2)^2}{k^2}. \end{aligned}$$
(22)

which is a well-known solution Prats (1966).

Appendix C: The Case Without Desorption

For the case \(b=0\) (desorption is absent), solution Eq. (8) reads

$$\begin{aligned} q^0&= q_{C0}=\mathrm{const},\nonumber \\ c^0&= y,\nonumber \\ p^0&= -x-\frac{\mathrm{Rp}}{2\mathrm{Pe}}y^2, \nonumber \\ u^0&= \kappa (\phi ^0)\mathrm{Pe},\nonumber \\ \phi ^0&= \phi _0-C_0q_{C0}. \end{aligned}$$
(23)

Then, equations for normal neutral perturbations (13) become

$$\begin{aligned} -i\omega \left( C+Q\right)&= \left( \partial _y^2-k^2-ik \frac{\kappa ^0}{\kappa _0} \mathrm{Pe}\right) C-\frac{ik}{\kappa _0}\varPsi \nonumber \\ (\partial _y^2-k^2) \varPsi&= -ik \mathrm{Rp}\kappa _0 C,\nonumber \\ -i\omega Q&=-bQ. \end{aligned}$$
(24)

The last equation has only trivial solution: \(Q=0\). Thus, substitution of \(C, \varPsi \sim \sin {\pi y}\) gives

$$\begin{aligned} \omega&= \frac{\kappa ^0}{\kappa _0} k \mathrm{Pe} ,\nonumber \\ \mathrm{Rp}&= \frac{\kappa ^0}{\kappa _0}\frac{(\pi ^2+k^2)^2}{k^2}. \end{aligned}$$
(25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maryshev, B.S., Klimenko, L.S. Convective Stability of a Net Mass Flow Through a Horizontal Porous Layer with Immobilization and Clogging. Transp Porous Med 137, 667–682 (2021). https://doi.org/10.1007/s11242-021-01582-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01582-6

Keywords

Navigation