Skip to main content
Log in

Effect of confinement on ammonia inversion

  • Regular Article - Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The effect of confinement on ammonia inversion inside \(\hbox {C}_{50}\) (\(D_{5h}\)) and \(\hbox {C}_{60}\) (\(I_h\)) fullerenes has been investigated. Calculations at the DFT(M06-2X)/6-311G** level of theory suggest that \(\hbox {NH}_{3}\) is stable inside both \(\hbox {C}_{50}\) and \(\hbox {C}_{60}\) by \(-8.6\) and \(-23.8~\hbox {kcal mol}^{-1}\), respectively. While the barrier for inversion of the free \(\hbox {NH}_{3}\) molecule is estimated to be \(1896~\hbox {cm}^{-1}\), it increases to \(1972~\hbox {cm}^{-1}\) and \(2108~\hbox {cm}^{-1}\), respectively, inside \(\hbox {C}_{50}\) and \(\hbox {C}_{60}\). The results also reveal that the magnitude of splitting of the bound states below the barrier in the symmetric double-well potential decreases inside both the \(\hbox {C}_{50}\) and \(\hbox {C}_{60}\) cages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has data included as electronic supplementary material.

References

  1. R. Warmuth, o-Benzyne: strained alkyne or cumulene?—NMR characterization in a molecular container. Angew. Chem. Int. Ed. Engl. 36, 1347–1350 (1997)

    Article  Google Scholar 

  2. R. Warmuth, S. Makowiec, Photochemical and thermal reactions of intermediates in the phenylnitrene rearrangement inside a hemicarcerand. J. Am. Chem. Soc. 129, 1233–1241 (2007)

    Article  Google Scholar 

  3. R. Warmuth, First innermolecular Diels–Alder reaction of o-benzyne inside a molecular container compound. Chem. Commun. pp. 59–60 (1998)

  4. D.J. Cram, M.E. Tanner, R. Thomas, The taming of cyclobutadiene. Angew. Chem. Int. Ed. Engl. 30, 1024–1027 (1991)

    Article  Google Scholar 

  5. W.T. Huck, Effects of nanoconfinement on the morphology and reactivity of organic materials. Chem. Commun. pp. 4143–4148 (2005)

  6. D.E. Martínez-Tong, M. Soccio, A. Sanz, C. García, T.A. Ezquerra, A. Nogales, Chain arrangement and glass transition temperature variations in polymer nanoparticles under 3D-confinement. Macromolecules 46, 4698–4705 (2013)

    Article  ADS  Google Scholar 

  7. P. Kumar, C.N. Ramachandran, B.K. Mishra, N. Sathyamurthy, Interaction of rare gas dimers in the confines of a carbon nanotube. Chem. Phys. Lett. 618, 42–45 (2015)

    Article  ADS  Google Scholar 

  8. T.B. Lee, M.L. McKee, Endohedral hydrogen exchange reactions in \(\text{ C}_{60}\) (\(\text{ nH}_{2}\)@ \(\text{ C}_{60}\), \(n = 1-5\)): comparison of recent methods in a high-pressure cooker. J. Am. Chem. Soc. 130, 17610–17619 (2008)

    Article  Google Scholar 

  9. B. Meier, S. Mamone, M. Concistre, J. Alonso-Valdesueiro, A. Krachmalnicoff, R.J. Whitby, M.H. Levitt, Electrical detection of ortho-para conversion in fullerene-encapsulated water. Nat. Commun. 6, 8112 (2015)

    Article  ADS  Google Scholar 

  10. M. Syamala, R.J. Cross, M. Saunders, \({^{129}}\)Xe NMR spectrum of xenon inside \(\text{ C}_{60}\). J. Am. Chem. Soc. 124, 6216–6219 (2002)

    Article  Google Scholar 

  11. G.-W. Wang, M. Saunders, R.J. Cross, Reversible Diels–Alder addition to fullerenes: a study of equilibria using \({^{3}}\)He NMR spectroscopy. J. Am. Chem. Soc. 123, 256–259 (2001)

    Article  Google Scholar 

  12. H. Kawakami, H. Okada, Y. Matsuo, Efficient Diels–Alder addition of cyclopentadiene to lithium ion encapsulated [60] fullerene. Org. Lett. 15, 4466–4469 (2013)

    Article  Google Scholar 

  13. H. Ueno, H. Kawakami, K. Nakagawa, H. Okada, N. Ikuma, S. Aoyagi, K. Kokubo, Y. Matsuo, T. Oshima, Kinetic study of the Diels–Alder reaction of \(\text{ Li}^+\)@C\({_{60}}\) with cyclohexadiene: greatly increased reaction rate by encapsulated \(\text{ Li}^+\). J. Am. Chem. Soc. 136, 11162–11167 (2014)

    Article  Google Scholar 

  14. J. Zhang, T. Fuhrer, W. Fu, J. Ge, D.W. Bearden, J. Dallas, J. Duchamp, K. Walker, H. Champion, H. Azurmendi et al., Nanoscale fullerene compression of an yttrium carbide cluster. J. Am. Chem. Soc. 134, 8487–8493 (2012)

    Article  Google Scholar 

  15. Q. Deng, A.A. Popov, Clusters encapsulated in endohedral metallofullerenes: how strained are they? J. Am. Chem. Soc. 136, 4257–4264 (2014)

    Article  Google Scholar 

  16. A. Calvo, M.C. Fuertes, B. Yameen, F.J. Williams, O. Azzaroni, G.J. Soler-Illia, Nanochemistry in confined environments: polyelectrolyte brush-assisted synthesis of gold nanoparticles inside ordered mesoporous thin films. Langmuir 26, 5559–5567 (2010)

    Article  Google Scholar 

  17. M.K. Kidder, A. Buchanan, Effect of pore confinement and molecular orientation on hydrogen transfer during a free-radical reaction in mesoporous silica. J. Phys. Chem. C 112, 3027–3031 (2008)

    Article  Google Scholar 

  18. D.J. Cram, Molecular container compounds. Nature 356, 29 (1992)

    Article  ADS  Google Scholar 

  19. A. Kaczmarek, R. Zaleśny, W. Bartkowiak, On the influence of confinement effects on electric properties: an ab initio study. Chem. Phys. Lett. 449, 314–318 (2007)

    Article  ADS  Google Scholar 

  20. R. Warmuth, Inner-phase stabilization of reactive intermediates. Eur. J. Org. Chem. 2001, 423–437 (2001)

    Article  Google Scholar 

  21. S. Sánchez-Carrera, J.-L. Kerdelhué, K.J. Langenwalter, N. Brown, R. Warmuth, Inner-phase reaction dynamics: the influence of hemicarcerand polarizability and shape on the potential energy surface of an inner-phase reaction. Eur. J. Org. Chem. 2005, 2239–2249 (2005)

    Article  Google Scholar 

  22. N.J. Turro, A.A. Marti, J.Y.-C. Chen, S. Jockusch, R.G. Lawler, M. Ruzzi, E. Sartori, S.-C. Chuang, K. Komatsu, Y. Murata, Demonstration of a chemical transformation inside a fullerene. The reversible conversion of the allotropes of \(\text{ H}_{2}\)@\(\text{ C}_{60}\). J. Am. Chem. Soc. 130, 10506–10507 (2008)

    Article  Google Scholar 

  23. C. Beduz, M. Carravetta, J.Y.-C. Chen, M. Concistrè, M. Denning, M. Frunzi, A.J. Horsewill, O.G. Johannessen, R. Lawler, X. Lei et al., Quantum rotation of ortho and para-water encapsulated in a fullerene cage. Proc. Natl. Acad. Sci. 109, 12894–12898 (2012)

    Article  ADS  Google Scholar 

  24. S. Mamone, M. Ge, D. Hüvonen, U. Nagel, A. Danquigny, F. Cuda, M. Grossel, Y. Murata, K. Komatsu, M. Levitt et al., Rotor in a cage: Infrared spectroscopy of an endohedral hydrogen-fullerene complex. J. Chem. Phys. 130, 081103 (2009)

    Article  ADS  Google Scholar 

  25. M. Xu, P.M. Felker, Z. Bačić, Light molecules inside the nanocavities of fullerenes and clathrate hydrates: inelastic neutron scattering spectra and the unexpected selection rule from rigorous quantum simulations. Int. Rev. Phys. Chem. 39, 425–463 (2020)

    Article  Google Scholar 

  26. O.P. Charkin, N.M. Klimenko, D.O. Charkin, DFT study of molecules confined inside fullerene and fullerene-like cages. Adv. Quantum Chem. 58, 69–114 (2009)

    Article  Google Scholar 

  27. A. Krapp, G. Frenking, Is this a chemical bond? a theoretical study of \(\text{ Ng}_{2}\)@\(\text{ C}_{60}\) (Ng = He, Ne, Ar, Kr, Xe). Chem. Eur. J. 13, 8256–8270 (2007)

    Article  Google Scholar 

  28. C.N. Ramachandran, N. Sathyamurthy, Water clusters in a confined nonpolar environment. Chem. Phys. Lett. 410, 348–351 (2005)

    Article  ADS  Google Scholar 

  29. S. Mallick, P. Kumar, Switching of the reaction enthalpy from exothermic to endothermic for decomposition of \(\text{ H}_2\)\(\text{ CO}_3\) under confinement. Phys. Chem. Chem. Phys. 21, 20849–20856 (2019)

    Article  Google Scholar 

  30. R. Sheridan, Quantum Mechanical Tunneling in Organic Reactive Intermediates (Wiley-Interscience, Hoboken, 2007)

    Google Scholar 

  31. S. Mallick, P. Kumar, Impact of post-CCSD(T) corrections on reaction energetics and rate constants of the \(\text{ OH}^\bullet \)+ HCl reaction. J. Phys. Chem. A 122, 7151–7159 (2018)

    Article  Google Scholar 

  32. S. Mallick, A. Kumar, P. Kumar, Revisiting the reaction energetics of \(\text{ CH}_3\)\(\text{ O}^\bullet \)+ \(\text{ O}_2\) (3\(\Sigma ^-\)) reaction: crucial role of post-CCSD (T) corrections. Phys. Chem. Chem. Phys. 21, 6559–6565 (2019)

    Article  Google Scholar 

  33. R. Bell, The tunnelling effect in chemistry (1980)

  34. J. Meisner, J. Kästner, Atom tunneling in chemistry. Angew. Chem. 55, 5400–5413 (2016)

    Article  Google Scholar 

  35. C. Doubleday, R. Armas, D. Walker, C.V. Cosgriff, E.M. Greer, Heavy-atom tunneling calculations in thirteen organic reactions: tunneling contributions are substantial, and Bell’s formula closely approximates multidimensional tunneling at \(\ge \) 250 K. Angew. Chem. 129, 13279–13282 (2017)

    Article  Google Scholar 

  36. A. Nandi, A. Sucher, S. Kozuch, Ping-Pong tunneling reactions: can fluoride jump at absolute zero? Chem. Eur. J. 24, 16348–16355 (2018)

    Article  Google Scholar 

  37. H. Vinh Lam Nguyen, W. Stahl, The effects of nitrogen inversion tunneling, methyl internal rotation, and \(^{14}\)N quadrupole coupling observed in the rotational spectrum of diethyl amine. J. Chem. Phys. 135, 024310 (2011)

    Article  ADS  Google Scholar 

  38. H. Frei, G.C. Pimentel, Reaction of nitric oxide and ozone in cryogenic matrixes: quantum-mechanical tunneling and vibrational enhancement. J. Phys. Chem. 85, 3355–3360 (1981)

    Article  Google Scholar 

  39. S. Mallick, P. Kumar, Computational evidence for sulfur atom tunneling in the ring flipping reaction of \(\text{ S}_4\)\(\text{ N}_4\). Chem. Phys. Lett. 749, 137440 (2020)

    Article  Google Scholar 

  40. K.C. Westaway, Using kinetic isotope effects to determine the structure of the transition states of \(\text{ S}_N\)2 reactions. Adv. Phys. Org. Chem. 41, 217–273 (2006)

    Google Scholar 

  41. J. Chai, H. Hu, T.S. Dibble, G.S. Tyndall, J.J. Orlando, Rate constants and kinetic isotope effects for methoxy radical reacting with \(\text{ NO}_2\) and \(\text{ O}_2\). J. Phys. Chem. 118, 3552–3563 (2014)

    Article  Google Scholar 

  42. F. Hund, Zur Deutung der Molekelspektren III. Z. Phys. 43, 805–826 (1927)

    Article  ADS  Google Scholar 

  43. D.M. Dennison, The infrared spectra of polyatomic molecules part I. Rev. Mod. Phys. 3, 280 (1931)

    Article  ADS  MATH  Google Scholar 

  44. R. Robertson, J.J. Fox, Studies in the infra-red region of the spectrum. Part III-Infra-red absorption spectra of ammonia, phosphine and arsine. Proc. R. Soc. Lond. Ser. A 120, 161–189 (1928)

    Article  ADS  Google Scholar 

  45. E. Barker, The molecular spectrum of ammonia II. The double band at \(10\mu \). Phys. Rev. 33, 684 (1929)

    Article  ADS  Google Scholar 

  46. D.M. Dennison, J. Hardy, The parallel type absorption bands of ammonia. Phys. Rev. 39, 938 (1932)

    Article  ADS  Google Scholar 

  47. D.M. Dennison, G. Uhlenbeck, The two-minima problem and the ammonia molecule. Phys. Rev. 41, 313 (1932)

    Article  ADS  MATH  Google Scholar 

  48. V. Špirko, Vibrational anharmonicity and the inversion potential function of \(\text{ NH}_3\). J. Mol. Spectrosc. 101, 30–47 (1983)

    Article  ADS  Google Scholar 

  49. Š. Urban, V. Špirko, D. Papoušek, J. Kauppinen, S. Belov, L. Gershtein, A. Krupnov, A simultaneous analysis of the microwave, submillimeterwave, far infrared, and infrared-microwave two-photon transitions between the ground and \(\nu _2\) inversion-rotation levels of \(^{14}\text{ NH}_3\). J. Mol. Spectrosc. 88, 274–292 (1981)

    Article  ADS  Google Scholar 

  50. Š. Urban, V. Špirko, D. Papoušek, R.S. McDowell, N.G. Nereson, S. Belov, L. Gershstein, A. Maslovskij, A. Krupnov, J. Curtis et al., Coriolis and l-type interactions in the \(\nu _2\), 2\(\nu _2\), and \(\nu _4\) states of \(^{14}\text{ NH}_3\). J. Mol. Spectrosc. 79, 455–495 (1980)

    Article  ADS  Google Scholar 

  51. A.M. Halpern, E.D. Glendening, Intrinsic reaction coordinate calculations of the inversion/bending potentials in the X̃ and à states of ammonia. Chem. Phys. Lett. 333, 391–396 (2001)

    Article  ADS  Google Scholar 

  52. A.M. Halpern, B.R. Ramachandran, E.D. Glendening, The inversion potential of ammonia: an intrinsic reaction coordinate calculation for student investigation. J. Chem. Edu. 84, 1067 (2007)

    Article  Google Scholar 

  53. W.E. Good, The inversion spectrum of ammonia. Phys. Rev. 70, 213 (1946)

    Article  ADS  Google Scholar 

  54. R.L. Legan, J.A. Roberts, E.A. Rinehart, C.C. Lin, Linewidths of the microwave inversion spectrum of ammonia. J. Chem. Phys. 43, 4337–4345 (1965)

    Article  ADS  Google Scholar 

  55. X. Huang, D.W. Schwenke, T.J. Lee, Rovibrational spectra of ammonia. II. Detailed analysis, comparison, and prediction of spectroscopic assignments for \(^{14}\text{ NH}_{3}\), \(^{15}\text{ NH}_{3}\) and \(^{14}\text{ ND}_{3}\). J. Chem. Phys. 134, 044321 (2011)

    Article  ADS  Google Scholar 

  56. C.-K. Lin, H.-C. Chang, S. Lin, Symmetric double-well potential model and its application to vibronic spectra: studies of inversion modes of ammonia and nitrogen-vacancy defect centers in diamond. J. Phys. Chem. A 111, 9347–9354 (2007)

    Article  Google Scholar 

  57. Ş. Erkoç, L. Türker, Ammonia deposition in fullerene: (\(\text{ NH}_3)_n\)@\(\text{ C}_{60}\). J. Mol. Struct.: Theochem 640, 57–61 (2003)

  58. Z. Slanina, F. Uhlík, L. Adamowicz, S. Nagase, Computing fullerene encapsulation of non-metallic molecules: \(\text{ N}_2\)@\(\text{ C}_{60}\) and \(\text{ NH}_3\)@\(\text{ C}_{60}\). Mol. Simulat. 31, 801–806 (2005)

    Article  Google Scholar 

  59. M. Kuznetsova, V. Kuznetsov, Theoretical estimation of the barrier to pyramidal inversion of ammonia and trimethylamine encapsulated in fullerenes. Russ. J. Org. Chem. 49, 1845–1847 (2013)

    Article  Google Scholar 

  60. M. Drek, F. Pluciński, A.P. Mazurek, Endohedral complexes of fullerene \(\text{ C}_{60}\) with small convalent molecules (\(\text{ H}_2\)O, \(\text{ NH}_3\), \(\text{ H}_2\), 2\(\text{ H}_2\), 3\(\text{ H}_2\), 4\(\text{ H}_2\), \(\text{ O}_2\), \(\text{ O}_3\)) in the context of potential drug transporter system. Acta Pol. Pharm. 70, 659–665 (2013)

    Google Scholar 

  61. O. Shameema, C.N. Ramachandran, N. Sathyamurthy, Blue shift in X–H stretching frequency of molecules due to confinement. J. Phys. Chem. A 110, 2–4 (2006)

    Article  Google Scholar 

  62. C. Zahn, The electric moment of \(\text{ CO}_2\), \(\text{ NH}_3\), and \(\text{ SO}_2\). Phys. Rev. 27, 455 (1926)

    Article  ADS  Google Scholar 

  63. K. Komatsu, M. Murata, Y. Murata, Encapsulation of molecular hydrogen in fullerene \(\text{ C}_{60}\) by organic synthesis. Science 307, 238–240 (2005)

    Article  ADS  Google Scholar 

  64. A. Krachmalnicoff, R. Bounds, S. Mamone, S. Alom, M. Concistrè, B. Meier, K. Kouřil, M.E. Light, M.R. Johnson, S. Rols et al., The dipolar endofullerene HF@\(\text{ C}_{60}\). Nat. Chem. 8, 953–957 (2016)

    Article  Google Scholar 

  65. K. Kurotobi, Y. Murata, A single molecule of water encapsulated in fullerene \(\text{ C}_{60}\). Science 333, 613–616 (2011)

    Article  ADS  Google Scholar 

  66. M. Saunders, H.A. Jiménez-Vázquez, R.J. Cross, R.J. Poreda, Stable compounds of helium and neon: He@\(\text{ C}_{60}\) and Ne@\(\text{ C}_{60}\). Science 259, 1428–1430 (1993)

    Article  ADS  Google Scholar 

  67. M. Saunders, H.A. Jimenez-Vazquez, R.J. Cross, S. Mroczkowski, M.L. Gross, D.E. Giblin, R.J. Poreda, Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high pressure. J. Am. Chem. Soc. 116, 2193–2194 (1994)

    Article  Google Scholar 

  68. K.E. Whitener Jr., M. Frunzi, S.-I. Iwamatsu, S. Murata, R.J. Cross, M. Saunders, Putting ammonia into a chemically opened fullerene. J. Am. Chem. Soc. 130, 13996–13999 (2008)

    Article  Google Scholar 

  69. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, G. Petersson, H. Nakatsuji Gaussian 16, Revision C. 03, Gaussian. Inc., Wallingford CT (2016)

  70. M. Saitow, U. Becker, C. Riplinger, E.F. Valeev, F. Neese, A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory. J. Chem. Phys. 146, 164105 (2017)

    Article  ADS  Google Scholar 

  71. Y. Minenkov, G. Bistoni, C. Riplinger, A.A. Auer, F. Neese, L. Cavallo, Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: the importance of sub-valence correlation. Phys. Chem. Chem. Phys. 19, 9374–9391 (2017)

    Article  Google Scholar 

  72. Y. Minenkov, E. Chermak, L. Cavallo, Accuracy of DLPNO-CCSD (T) method for noncovalent bond dissociation enthalpies from coinage metal cation complexes. J. Chem. Theory Comput. 11, 4664–4676 (2015)

    Article  Google Scholar 

  73. S. Mallick, B. Roy, P. Kumar, A comparison of DLPNO-CCSD(T) and CCSD(T) method for the determination of the energetics of hydrogen atom transfer reactions. Comput. Theor. Chem. 1187, 112934 (2020)

    Article  Google Scholar 

  74. G. Bistoni, C. Riplinger, Y. Minenkov, L. Cavallo, A.A. Auer, F. Neese, Treating subvalence correlation effects in domain based pair natural orbital coupled cluster calculations: an out-of-the-box approach. J. Chem. Theory Comput. 13, 3220–3227 (2017)

    Article  Google Scholar 

  75. F. Neese, The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012)

    Article  Google Scholar 

  76. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 21, August 2020, Editor: Russell D. Johnson III http://cccbdb.nist.gov

  77. H. Jeffreys, On certain approximate solutions of linear differential equations of the second order. Proc. Lond. Math. Soc. 2, 428–436 (1925)

    Article  MATH  Google Scholar 

  78. G. Wentzel, Eine verallgemeinerung der quantenbedingungen für die zwecke der wellenmechanik. Z. Phys. 38, 518–529 (1926)

    Article  ADS  MATH  Google Scholar 

  79. H.A. Kramers, Wellenmechanik und halbzahlige Quantisierung. Z. Phys. 39, 828–840 (1926)

    Article  ADS  MATH  Google Scholar 

  80. L. Brillouin, La mecanique ondulatoire de Schrödinger; une méthode générale de résolution par approximations successives. Compt. Rend. Hebd. Seances Acad. Sci. 183, 24–26 (1926)

  81. M.N. Guimarães, M. Ragni, A.C.P. Bitencourt, F.V. Prudente, Alternative hyperspherical adiabatic decoupling scheme for tetratomic molecules: quantum two-dimensional study of the ammonia umbrella motion. Eur. Phys. J. D 67, 253 (2013)

    Article  ADS  Google Scholar 

  82. G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules, vol. 2 (Krieger Publishing Company, Malabar, 1991)

    Google Scholar 

Download references

Acknowledgements

SM acknowledges MNIT Jaipur for financial assistance. PK acknowledges SERB, Govt. of India, for the financial support through the sanctioned project [No. EEQ/2018/000305]. NS would like to thank Dr. T. Ramasami for raising the question of the effect of \(\hbox {C}_{60}\) encapsulation on ammonia inversion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brijesh Kumar Mishra, Pradeep Kumar or Narayanasami Sathyamurthy.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 137 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallick, S., Mishra, B.K., Kumar, P. et al. Effect of confinement on ammonia inversion. Eur. Phys. J. D 75, 113 (2021). https://doi.org/10.1140/epjd/s10053-021-00118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00118-3

Navigation