Skip to main content
Log in

An efficient layer node attack strategy to dismantle large multiplex networks

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Network dismantling aims to identify the minimum set of nodes whose removal breaks the network into components of sub-extensive size. The solution to this problem is significant for designing optimal strategies for immunization policies, information spreading, and network attack. Modern systems, such as social networks and critical infrastructure networks, which consist of nodes connected by links of multiple types can be encapsulated into the framework of multiplex networks. Here we focus on the dismantling problem in multiplex networks under layer node-based attack, and propose an efficient dismantling algorithm based on network decycling. Experiments on synthetic and real-world networks show that the proposed algorithm outperforms existing algorithms by a considerable margin. We also show how the robustness of a multiplex network is affected by the interlayer degree correlation. Our results shed light on the design of more resilient network systems and the effective destruction of harmful networks.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The real-world multiplex network datasets analysed during the current study are available at: https://manliodedomenico.com/data.php. The synthetic multiplex network datasets generated and analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. M.E.J. Newman, Networks (Oxford University Press, Oxford, 2018)

    MATH  Google Scholar 

  2. R. Albert, A.L. Barabási, Rev. Modern Phys. 74, 47 (2002)

    ADS  MathSciNet  Google Scholar 

  3. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Reports 424, 175 (2006)

    ADS  MathSciNet  Google Scholar 

  4. R. Albert, H. Jeong, A.L. Barabási, Nature 406, 378 (2000)

    ADS  Google Scholar 

  5. M.E. Newman, SIAM Rev. 45, 167 (2003)

    ADS  MathSciNet  Google Scholar 

  6. L. Tian, A. Bashan, D.N. Shi, Y.Y. Liu, Nat. Commun. 8, 14223 (2017)

    ADS  Google Scholar 

  7. F. Morone, H.A. Makse, Nature 524, 65 (2015)

    ADS  Google Scholar 

  8. A. Braunstein, L. Dall’Asta, G. Semerjian, L. Zdeborová, Proc. Natl. Acad. Sci. 113, 12368 (2016)

    Google Scholar 

  9. S. Mugisha, H.J. Zhou, Phys. Rev. E 94, 012305 (2016)

    ADS  Google Scholar 

  10. D. Kempe, J. Kleinberg, E. Tardos, Theory Comput. 11, 105 (2015)

    MathSciNet  Google Scholar 

  11. J. Leskovec, L.A. Adamic, B.A. Huberman, ACM Trans. Web (TWEB) 1, 5 (2007)

    Google Scholar 

  12. M. Richardson, P. Domingos, Mining Knowledge-Sharing Sites for Viral Marketing, in Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Association for Computing Machinery, New York, NY, USA, 2002), KDD ’02, p. 61–70

  13. R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 65, 036104 (2002)

    ADS  Google Scholar 

  14. F. Altarelli, A. Braunstein, L. Dall’Asta, J.R. Wakeling, R. Zecchina, Phys. Rev. X 4, 021024 (2014)

    Google Scholar 

  15. Y. Chen, G. Paul, S. Havlin, F. Liljeros, H.E. Stanley, Phys. Rev. Lett. 101, 058701 (2008)

    ADS  Google Scholar 

  16. R. Cohen, S. Havlin, D. Ben-Avraham, Phys. Rev. Lett. 91, 247901 (2003)

    ADS  Google Scholar 

  17. R. Cohen, K. Erez, D. Ben-Avraham, S. Havlin, Phys. Rev. Lett. 86, 3682 (2001)

    ADS  Google Scholar 

  18. V. Latora, M. Marchiori, Phys. Rev. E 71, 015103 (2005)

    ADS  Google Scholar 

  19. D.S. Callaway, M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. Lett. 85, 5468 (2000)

    ADS  Google Scholar 

  20. L. Lü, D. Chen, X.L. Ren, Q.M. Zhang, Y.C. Zhang, T. Zhou, Phys. Rep. 650, 1 (2016)

    ADS  MathSciNet  Google Scholar 

  21. H.J. Zhou, Eur. Phys. J. B 86, 455 (2013)

    ADS  Google Scholar 

  22. L. Zdeborová, P. Zhang, H.J. Zhou, Sci. Rep. 6, 37954 (2016)

    ADS  Google Scholar 

  23. X.L. Ren, N. Gleinig, D. Helbing, N. Antulov-Fantulin, Proc. Nat. Acad. Sci. 116, 6554 (2019)

    Google Scholar 

  24. P. Clusella, P. Grassberger, F.J. Pérez-Reche, A. Politi, Phys. Rev. Lett. 117, 208301 (2016)

    ADS  Google Scholar 

  25. S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, Nature 464, 1025 (2010)

    ADS  Google Scholar 

  26. S. Boccaletti, G. Bianconi, R. Criado, C. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014)

    ADS  MathSciNet  Google Scholar 

  27. M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez, A. Arenas, Phys. Rev. X 3, 041022 (2013)

    Google Scholar 

  28. K.M. Lee, B. Min, K.I. Goh, Eur. Phys. J. B 88, 48 (2015)

    ADS  Google Scholar 

  29. B. Min, S.D. Yi, K.M. Lee, K.I. Goh, Phys. Rev. E 89, 042811 (2014)

    ADS  Google Scholar 

  30. S. Osat, A. Faqeeh, F. Radicchi, Nat. Commun. 8, 1540 (2017)

    ADS  Google Scholar 

  31. G.J. Baxter, G. Timár, J.F.F. Mendes, Phys. Rev. E 98, 032307 (2018)

    ADS  Google Scholar 

  32. M. Qi, Y. Deng, H. Deng, J. Wu, Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 121104 (2018)

  33. D.W. Zhao, L.H. Wang, Y.F. Zhi, J. Zhang, Z. Wang, Sci. Rep. 6, 24304 (2016)

    ADS  Google Scholar 

  34. M. Qi, Y. Bai, X. Li, H. Deng, T. Wang, Appl. Sci. 9, 3968 (2019)

    Google Scholar 

  35. P. Erdős, A. Rényi, Publicationes Mathematicae Debrecen 6, 18 (1959)

    Google Scholar 

  36. Y. Deng, J. Wu, Y. jin Tan, Physica A: Statistical Mechanics and its Applications 442, 74 (2016)

  37. A.L. Barabási, R. Albert, Science 286, 509 (1999)

    ADS  MathSciNet  Google Scholar 

  38. K.M. Lee, J.Y. Kim, W. kuk Cho, K.I. Goh, I.M. Kim, New J. Phys. 14, 033027 (2012)

  39. K.I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87, 278701 (2001)

    Google Scholar 

  40. M. De Domenico, A. Solé-Ribalta, S. Gómez, A. Arenas, Proc. Nat. Acad. Sci. 111, 8351 (2014)

    ADS  Google Scholar 

  41. A. Cardillo, J. Gómez-Gardeñes, M. Zanin, M. Romance, D. Papo, F.D. Pozo, S. Boccaletti, Sci. Rep. 3, 1344 (2013)

    ADS  Google Scholar 

  42. B.L. Chen, D.H. Hall, D.B. Chklovskii, Proc. Nat. Acad. Sci. 103, 4723 (2006)

    ADS  Google Scholar 

  43. M. De Domenico, M.A. Porter, A. Arenas, J. Complex Netw. 3, 159 (2014)

    Google Scholar 

  44. C. Stark, B.J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, M. Tyers, Nucleic Acids Res. 34, D535 (2006)

    Google Scholar 

  45. M. De Domenico, V. Nicosia, A. Arenas, V. Latora, Nat. Commun. 6, 6864 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 11947058), and the Henan Provincial Education Department (Key Scientific Research Project of Colleges and Universities in Henan Province with Grant Number 20A120011).

Author information

Authors and Affiliations

Authors

Contributions

JH conceived the project and performed the simulations. All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Jihui Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Tang, S., Shi, Y. et al. An efficient layer node attack strategy to dismantle large multiplex networks. Eur. Phys. J. B 94, 74 (2021). https://doi.org/10.1140/epjb/s10051-021-00083-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00083-1

Navigation