Skip to main content
Log in

Stability of Traveling Wave Solutions of Nonlinear Dispersive Equations of NLS Type

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We present a rigorous modulational stability theory for periodic traveling wave solutions to equations of nonlinear Schrödinger type. For Hamiltonian dispersive equations with a non-singular symplectic form and d conserved quantities (in addition to the Hamiltonian), one expects that generically \({{\mathcal {L}}}\), the linearization around a periodic traveling wave, will have a particular Jordan structure. The kernel \(\ker ({\mathcal L})\) and the first generalized kernel \(\ker ({\mathcal L}^2)/\ker ({{\mathcal {L}}})\) are expected to be d dimensional, with no higher generalized kernels. The breakup of this Jordan block under perturbations arising from a change in boundary conditions dictates the modulational stability or instability of the underlying periodic traveling wave. This general picture is worked out in detail for equations of nonlinear Schrödinger (NLS) type. We give explicit genericity conditions that guarantee that the Jordan form is the generic one: these take the form of non-vanishing determinants of certain matrices whose entries can be expressed in terms of a finite number of moments of the traveling wave solution. Assuming that these genericity conditions are met we give a normal form for the small eigenvalues that result from the break-up of the generalized kernel, in the form of the eigenvalues of a quadratic matrix pencil. We compare these results to direct numerical simulation for the cubic and quintic focusing and defocusing NLS equations subject to both longitudinal and transverse perturbations. The stability of traveling waves of the cubic NLS subject to longitudinal perturbations has been previously studied using the integrability and our results agree with those in the literature. All of the remaining cases are new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Of course this method can never establish stability, only instability, as there may be eigenvalues with non-zero real part located away from a neighborhood of the origin.

References

  1. Alfimov, G.L., Its, A.R., Kulagin, N.E.: Modulation instability of solutions of the nonlinear Schrödinger equation. Teoret. Mat. Fiz. 84(2), 163–172, 1990

    MathSciNet  MATH  Google Scholar 

  2. Baumgärtel, H.: Analytic Perturbation Theory for Matrices and Operators, Operator Theory: Advances and Applications, vol. 15. Birkhäuser Verlag, Basel 1985

    MATH  Google Scholar 

  3. Benzoni-Gavage, S., Mietka, C., Rodrigues, L.M.: Co-periodic stability of periodic waves in some Hamiltonian PDEs. Nonlinearity 29(11), 3241, 2016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Benzoni-Gavage, S., Noble, P., Rodrigues, L.M.: Stability of periodic waves in Hamiltonian PDEs. Journées équations aux dérivées partielles, 1–22 (2013)

  5. Benzoni-Gavage, S., Noble, P., Rodrigues, L.M.: Slow modulations of periodic waves in Hamiltonian PDEs, with application to capillary fluids. J. Nonlinear Sci. 24(4), 711–768, 2014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bottman, N., Deconinck, B., Nivala, M.: Elliptic solutions of the defocusing NLS equation are stable. J. Phys. A Math. Theor. 44(28), 285201, 2011

    Article  MathSciNet  MATH  Google Scholar 

  7. Bridges, T., Fan, E.: Solitary waves, periodic waves, and a stability analysis for Zufiria’s higher-order Boussinesq model for shallow water waves. Phys. Lett. A 326(5–6), 381–390, 2004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bronski, J., Johnson, M.A., Kapitula, T.: An instability index theory for quadratic pencils and applications. Commun. Math. Phys. 327(2), 521–550, 2014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bronski, J.C., Hur, V.M.: Modulational instability and variational structure. Stud. Appl. Math. 132(4), 285–331, 2014

    Article  MathSciNet  MATH  Google Scholar 

  10. Bronski, J.C., Johnson, M.A.: The modulational instability for a generalized Korteweg–de Vries equation. Arch. Ration. Mech. Anal. 197(2), 357–400, 2010

    Article  MathSciNet  MATH  Google Scholar 

  11. Bronski, J.C., Johnson, M.A., Kapitula, T.: An index theorem for the stability of periodic travelling waves of Korteweg–de Vries type. Proc. R. Soc. Edinb. Sect. A Math. 141(6), 1141–1173, 2011

    Article  MathSciNet  MATH  Google Scholar 

  12. Carroll, L.: Through the Looking Glass, and What Alice Found There. W.B Conkley Company, Chicago 1900

    Google Scholar 

  13. Crosta, M., Fratalocchi, A., Trillo, S.: Bistability and instability of dark-antidark solitons in the cubic-quintic nonlinear Schrödinger equation. Phys. Rev. A 84, 063809, 2011

    Article  ADS  Google Scholar 

  14. Deconinck, B., Segal, B.L.: The stability spectrum for elliptic solutions to the focusing NLS equation. Phys. D 346, 1–19, 2017

    Article  MathSciNet  MATH  Google Scholar 

  15. Demirkaya, A., Hakkaev, S.: On the spectral stability of periodic waves of the coupled schrödinger equations. Phys. Lett. A 379(45–46), 2908–2914, 2015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Dodgson, C.L.: Condensation of determinants, being a new and brief method for computing their arithmetical values. Proc. R. Soc. Lond. 15, 150, 1867

    Article  Google Scholar 

  17. Ercolani, N., Forest, M.G., McLaughlin, D.W.: Modulational stability of two-phase sine-Gordon wavetrains. Stud. Appl. Math. 71(2), 91–101, 1984

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Fibich, G.: The Nonlinear Schrödinger Equation, Applied Mathematical Sciences. Singular Solutions and Optical Collapse, vol. 192. Springer, Cham 2015

    MATH  Google Scholar 

  19. Flaschka, H., Forest, M.G., McLaughlin, D.W.: Multiphase averaging and the inverse spectral solution of the Korteweg–de Vries equation. Commun. Pure Appl. Math. 33(6), 739–784, 1980

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Fuchs, L.: Die Periodicitätsmoduln der hyperelliptischen Integrale als Functionen eines Parameters aufgefasst. J. Reine Angew. Math. 71, 91–127, 1870

    MathSciNet  MATH  Google Scholar 

  21. Gallay, T., Haragus, M.: Orbital stability of periodic waves for the nonlinear Schrödinger equation. J. Dyn. Differ. Equ. 19(4), 825–865, 2007

    Article  MATH  Google Scholar 

  22. Gardner, R.A.: Spectral analysis of long wavelength periodic waves and applications. J. Reine Angew. Math. 491, 149–181, 1997

    Article  MathSciNet  MATH  Google Scholar 

  23. Givental, A.B.: Sturm’s theorem for hyperelliptic integrals. Algebra i Analiz 1(5), 95–102, 1989

    MathSciNet  Google Scholar 

  24. Grava, T., Tian, F.R.: The generation, propagation, and extinction of multiphases in the KdV zero-dispersion limit. Commun. Pure Appl. Math. 55(12), 1569–1639, 2002

    Article  MathSciNet  MATH  Google Scholar 

  25. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74(1), 160–197, 1987

    Article  MathSciNet  MATH  Google Scholar 

  26. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94(2), 308–348, 1990

    Article  MathSciNet  MATH  Google Scholar 

  27. Gustafson, S., Le Coz, S., Tsai, T.P.: Stability of periodic waves of 1d cubic nonlinear Schrödinger equations. Appl. Math. Res. Express 2017(2), 431–487, 2017

    Article  MATH  Google Scholar 

  28. Hakkaev, S., Stanislavova, M., Stefanov, A.: Spectral stability for classical periodic waves of the Ostrovsky and short pulse models. Stud. Appl. Math. 139(3), 405–433, 2017

    Article  MathSciNet  MATH  Google Scholar 

  29. Haragus, M.: Transverse spectral stability of small periodic traveling waves for the KP equation. Stud. Appl. Math. 126(2), 157–185, 2011

    Article  MathSciNet  MATH  Google Scholar 

  30. Jin, J., Liao, S., Lin, Z.: Nonlinear modulational instability of dispersive PDE models. Arch. Ration. Mech. Anal. 231(3), 1487–1530, 2019

    Article  MathSciNet  MATH  Google Scholar 

  31. Jin, S., Levermore, C.D., McLaughlin, D.W.: The semiclassical limit of the defocusing NLS hierarchy. Commun. Pure Appl. Math. 52(5), 613–654, 1999

    Article  MathSciNet  MATH  Google Scholar 

  32. Johnson, M.A.: Nonlinear stability of periodic traveling wave solutions of the generalized Korteweg–de Vries equation. SIAM J. Math. Anal. 41(5), 1921–1947, 2009

    Article  MathSciNet  MATH  Google Scholar 

  33. Johnson, M.A., Noble, P., Rodrigues, L.M., Zumbrun, K.: Behavior of periodic solutions of viscous conservation laws under localized and nonlocalized perturbations. Inventiones Mathematicae 197(1), 115–213, 2014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Johnson, M.A., Zumbrun, K.: Transverse instability of periodic traveling waves in the generalized Kadomtsev–Petviashvili equation. SIAM J. Math. Anal. 42(6), 2681–2702, 2010

    Article  MathSciNet  MATH  Google Scholar 

  35. Johnson, M.A., Zumbrun, K., Bronski, J.C.: On the modulation equations and stability of periodic generalized Korteweg–de Vries waves via Bloch decompositions. Phys. D 239(23–24), 2057–2065, 2010

    Article  MathSciNet  MATH  Google Scholar 

  36. Jones, C.K., Marangell, R., Miller, P.D., Plaza, R.G.: On the stability analysis of periodic sine-Gordon traveling waves. Phys. D 251, 63–74, 2013

    Article  MathSciNet  MATH  Google Scholar 

  37. Jones, C.K., Marangell, R., Miller, P.D., Plaza, R.G.: Spectral and modulational stability of periodic wavetrains for the nonlinear Klein–Gordon equation. J. Differ. Equ. 257(12), 4632–4703, 2014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Kamchatnov, A.M.: Nonlinear Periodic Waves and Their Modulations. World Scientific Publishing Co. Inc, River Edge, NJ 2000. (an introductory course)

    Book  MATH  Google Scholar 

  39. Kapitula, T., Hibma, E., Kim, H.P., Timkovich, J.: Instability indices for matrix polynomials. Linear Algebra Appl. 439(11), 3412–3434, 2013

    Article  MathSciNet  MATH  Google Scholar 

  40. Kapitula, T., Kevrekidis, P.G., Sandstede, B.: Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems. Phys. D 195(3–4), 263–282, 2004

    Article  MathSciNet  MATH  Google Scholar 

  41. Kapitula, T., Kevrekidis, P.G., Sandstede, B.: Addendum: “Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems”. Phys. D 201(1–2), 199–201, 2005

    Article  MathSciNet  MATH  Google Scholar 

  42. Kapitula, T., Promislow, K.: Spectral and Dynamical Stability of Nonlinear Waves, Applied Mathematical Sciences, vol. 185. Springer, New York 2013. (with a foreword by Christopher K. R. T, Jones)

    Book  MATH  Google Scholar 

  43. Kapitula, T., Sandstede, B.: Instability mechanism for bright solitary-wave solutions to the cubic-quintic Ginzburg–Landau equation. JOSA B 15(11), 2757–2762, 1998

    Article  ADS  MathSciNet  Google Scholar 

  44. Kuchment, P.: Floquet Theory for Partial Differential Equations, Operator Theory: Advances and Applications, vol. 60. Birkhäuser Verlag, Basel 1993

    Book  MATH  Google Scholar 

  45. Kuznetsov, E., Turitsyn, S.: Talanov transformations in self-focusing problems and instability of stationary waveguides. Phys. Lett. A 112(6), 273–275, 1985

    Article  ADS  Google Scholar 

  46. Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg–de Vries equation I. Commun. Pure Appl. Math. 36(3), 253–290, 1983

    Article  MathSciNet  MATH  Google Scholar 

  47. Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg–de Vries equation II. Commun. Pure Appl. Math. 36(5), 571–593, 1983

    Article  MathSciNet  MATH  Google Scholar 

  48. Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg–de Vries equation III. Commun. Pure Appl. Math. 36(6), 809–829, 1983

    Article  MathSciNet  MATH  Google Scholar 

  49. Lidskiĭ, V.B.: On the theory of perturbations of nonselfadjoint operators. Ž. Vyčisl. Mat. i Mat. Fiz. 6(1), 52–60, 1966

    MathSciNet  Google Scholar 

  50. Lin, Z., Zeng, C.: Instability, Index Theorem, and Exponential Trichotomy for Linear Hamiltonian PDEs. arXiv:1703.04016, 2017

  51. Maddocks, J.H., Overton, M.L.: Stability theory for dissipatively perturbed Hamiltonian systems. Commun. Pure Appl. Math. 48(6), 583–610, 1995

    Article  MathSciNet  MATH  Google Scholar 

  52. Marangell, R., Miller, P.D.: Dynamical Hamiltonian–Hopf instabilities of periodic traveling waves in Klein–Gordon equations. Phys. D 308, 87–93, 2015

    Article  MathSciNet  MATH  Google Scholar 

  53. McKean, H., Moll, V.: Elliptic Curves. Cambridge University Press, Cambridge 1997. (function theory, geometry, arithmetic)

    Book  MATH  Google Scholar 

  54. Moro, J., Burke, J.V., Overton, M.L.: On the Lidskii–Vishik–Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure. SIAM J. Matrix Anal. Appl. 18(4), 793–817, 1997

    Article  MathSciNet  MATH  Google Scholar 

  55. Ndzana, F.I., Mohamadou, A., Kofané, T.C.: Modulational instability in the cubic-quintic nonlinear Schrödinger equation through the variational approach. Opt. Commun. 275(2), 421–428, 2007

    Article  ADS  Google Scholar 

  56. Rowlands, G.: On the stability of solutions of the non-linear Schrödinger equation. IMA J. Appl. Math. 13(3), 367–377, 1974

    Article  MATH  Google Scholar 

  57. Serre, D.: Spectral stability of periodic solutions of viscous conservation laws: large wavelength analysis. Commun. Partial Differ. Equ. 30(1–2), 259–282, 2005

    Article  MathSciNet  MATH  Google Scholar 

  58. Stanislavova, M.: Linear stability of solitary waves for the one-dimensional benney-luke and Klein–Gordon equations. Stud. Appl. Math. 134(1), 1–23, 2015

    Article  MathSciNet  MATH  Google Scholar 

  59. Stanislavova, M., Stefanov, A.: Spectral stability analysis for special solutions of second order in time pdes: the higher dimensional case. Phys. D 262, 1–13, 2013

    Article  MathSciNet  MATH  Google Scholar 

  60. Talanov, V.: About self-focusing of light in media with cubic nonlinearity. Sov. Phys. JETP Lett. 11(6), 303–305, 1970

    Google Scholar 

  61. Venakides, S., Deift, P., Oba, R.: The Toda shock problem. Commun. Pure Appl. Math. 44(8–9), 1171–1242, 1991

    Article  MathSciNet  MATH  Google Scholar 

  62. Weinstein, M.: Modulational stability of ground states of nonlinear schrödinger equations. SIAM J. Math. Anal. 16(3), 472–491, 1985

    Article  MathSciNet  MATH  Google Scholar 

  63. Whitham, G.B.: Non-linear dispersive waves. Proc. R. Soc. Ser. A 283, 238–261, 1965

    ADS  MathSciNet  MATH  Google Scholar 

  64. Whitham, G.B.: Linear and Nonlinear. Waves Pure and Applied Mathematics. Wiley, Hoboken 1974

    MATH  Google Scholar 

Download references

Acknowledgements

Jared C. Bronski would like to acknowledge support from the National Science Foundation under Grant DMS 1615418. Mathew A. Johnson would like to acknowledge support from the National Science Foundation under Grant DMS-1614785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katelyn Plaisier Leisman.

Additional information

Communicated by P. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Constructing the Periodic Eigenfunctions

In this Appendix, we show how one can find the two periodic null vectors and two periodic generalized null vectors for \({\mathcal {L}}\). Given the four solutions to \({\mathcal {L}} \mathbf{u}=0\) from Equation (26) and the two additional quantities from Equation (27), we can write linear combinations

$$\begin{aligned} \mathbf{u}_0=&\sigma \left( \begin{array}{c}0\\ A\end{array}\right) ,&\mathbf{u}_1=&\gamma \left( \begin{array}{c}A_E\\ AS_E\end{array}\right) +\rho \left( \begin{array}{c}A_\kappa \\ AS_\kappa \end{array}\right) +\sigma \left( \begin{array}{c}A_\omega \\ AS_\omega \end{array}\right) ,\\ \mathbf{u}_2=&\sigma \left( \begin{array}{c}A_y\\ AS_y\end{array}\right) ,&\mathbf{u}_3=&\tau \left( \begin{array}{c}A_E\\ AS_E\end{array}\right) +\nu \left( \begin{array}{c}A_\kappa \\ AS_\kappa \end{array}\right) +\sigma \left( \begin{array}{c}0\\ yA/2\end{array}\right) . \end{aligned}$$

Then \({\mathcal {L}}{} \mathbf{u}_{0,2}=0\) and \({\mathcal {L}}\mathbf{u}_{1,3}=\mathbf{u}_{0,2}\). The null vectors \(\mathbf{u}_{0,2}\) are already periodic, so we need to choose \(\sigma ,\ \gamma ,\ \rho ,\ \tau ,\ \nu \) to enforce the boundary conditions \(\mathbf{u}_j(T)=\mathbf{u}_j(0)\) on the generalized null vectors \(\mathbf{u}_{1,3}\). Given that \(A(0)=A(T)\) and \(S(0)=S(T)-\eta \), we have

$$\begin{aligned} A_E(0)&= \left[ A(0)\right] _E=\left[ A(T)\right] _E=A_y(T)T_E+A_E(T)\\ \nonumber S_E(0)&= \left[ S(0)\right] _E=\left[ S(T)-\eta \right] _E=S_y(T)T_E+S_E(T)-\eta _E, \end{aligned}$$

and similarly for \(A_\kappa \), \(A_\omega \), \(S_\kappa \), and \(S_\omega \). Using these to equate \(\mathbf{u}_1(0)=\mathbf{u}_1(T)\) and \(\mathbf{u}_3(0)=\mathbf{u}_3(T)\) results in the following four equations:

$$\begin{aligned}&\gamma T_E+\rho T_\kappa +\sigma T_\omega =0, \\&\gamma \eta _E+\rho \eta _\kappa +\sigma \eta _\omega =0, \\&\tau T_E+\nu T_\kappa =0, \\&\tau \eta _E+\nu \eta _\kappa +\sigma T/2=0, \end{aligned}$$

which we can solve for \(\gamma ,\ \rho ,\ \sigma ,\ \tau ,\ \nu \), finding

$$\begin{aligned}&\gamma = \{T,\eta \}_{\kappa ,\omega },&\rho = \{T,\eta \}_{\omega ,E},&\sigma = \{T,\eta \}_{E,\kappa },&\\&\tau = T T_\kappa /2,&\nu = -T T_E/2.&\end{aligned}$$

Appendix B: Evaluating Matrix Elements

In this Appendix, we show some details of how to compute the matrix elements from Equation (40).

We begin by computing the elements of \(\mathbf{M}^{(2)}\), which are also the elements of the gram matrix

$$\begin{aligned}&\mathbf{v}_0 \mathbf{u}_0 = -\sigma \int _0^T A (\gamma A_E + \rho A_{\kappa } + \sigma A_{\omega }) \mathrm{d}y&\\&\mathbf{v}_2 \mathbf{u}_0 = -\sigma \int _0^T A (\tau A_E + \nu A_{\kappa }) \mathrm{d}y&\\&\mathbf{v}_2 \mathbf{u}_2 = \sigma \int _0^T A A_y (\tau S_E + \nu S_{\kappa } + \sigma \frac{y}{2}) - A S_y (\tau A_E + \nu A_{\kappa } ) \mathrm{d}y.&\end{aligned}$$

The first two are somewhat trivial, the third is only slightly more complicated and requires some integration by parts and the fact that \((\tau \partial _E + \nu \partial _\kappa ) \eta +\sigma T/2 = 0\). We see that

$$\begin{aligned}&\mathbf{v}_0 \mathbf{u}_0 = -\frac{\sigma }{2} (\gamma M_E + \rho M_\kappa + \sigma M_\omega ) = - \frac{\sigma }{2} \{\eta ,T,M\}_{\kappa ,E,\omega }&\\&\mathbf{v}_2 \mathbf{u}_0 = -\frac{\sigma }{2} (\tau M_E + \nu M_\kappa ) = -\frac{\sigma T}{4}\{T,M\}_{\kappa ,E}\\&\mathbf{v}_2 \mathbf{u}_2 = -\frac{\sigma }{2} (\tau \kappa T_E + \nu \kappa T_\kappa + \nu T + \sigma M/2) =-\frac{\sigma ^2M}{4}+\frac{\sigma T^2T_E}{4}. \end{aligned}$$

We also note that using \((\gamma \partial _E + \rho \partial _\kappa + \sigma \partial _\omega ) \eta = 0\), we also have

$$\begin{aligned} \mathbf{v}_0 \mathbf{u}_2&= \sigma \int _0^T A A_y (\gamma S_E + \rho S_{\kappa } + \sigma S_{\omega }) - A S_y (\gamma A_E + \rho A_{\kappa } + \sigma A_{\omega } ) \mathrm{d}y\\&= -\frac{\sigma }{2}(\gamma \kappa T_E+\rho \kappa T_\kappa +\rho T+\sigma \kappa T_\omega ) = -\frac{\sigma \rho T}{2}. \end{aligned}$$

It remains to compute the quantities for \(\mathbf{M}^{(1)}\) and \(\mathbf{M}^{(0)}\). For \(\mathbf{M}^{(1)}\), because of the symmetry of \({\mathcal {L}}^{(1)}\), we need only to find the four quantities \(\mathbf{v}_{0,2}{\mathcal {L}}^{(1)}{} \mathbf{u}_{0,2}\). One can show that \({\mathcal {L}}^{(1)}{} \mathbf{u}_0=2i\mathbf{u}_2\), so that \(\mathbf{v}_0{\mathcal {L}}^{(1)}{} \mathbf{u}_0\) and \(\mathbf{v}_2{\mathcal {L}}^{(1)}{} \mathbf{u}_0\) follow from \(\mathbf{v}_j\mathbf{u}_k\). We have

$$\begin{aligned} \mathbf{v}_0{\mathcal {L}}^{(1)}{} \mathbf{u}_0&=-i\sigma \rho T,\\ \mathbf{v}_2{\mathcal {L}}^{(1)}{} \mathbf{u}_0&= -i\sigma (T\nu +\sigma M/2). \end{aligned}$$

Here we will compute \(\mathbf{v}_0{\mathcal {L}}^{(1)}{} \mathbf{u}_2\), leaving computation of \(\mathbf{v}_2{\mathcal {L}}^{(1)}{} \mathbf{u}_2\) as an exercise for the reader. The integral we seek to compute is

$$\begin{aligned} \mathbf{v}_0{\mathcal {L}}^{(1)}{} \mathbf{u}_2&=-2i\sigma \int _0^TA(\gamma S_E +\rho S_\kappa +\sigma S_\omega )(-A' S'-(A S')')\\&\quad +(\gamma A_E+\rho A_\kappa +\sigma A_\omega )(-A''+A (S')^2)\mathrm{d}y, \end{aligned}$$

which can be simplified using that \(2A'S'+AS''=0\) and rearranged as

$$\begin{aligned} \mathbf{v}_0{\mathcal {L}}^{(1)}{} \mathbf{u}_2&=-2i\sigma \left[ \gamma \int _0^T -A''A_E +AA_E( S')^2\mathrm{d}y\right. \\&\quad \left. +\rho \int _0^T -A''A_\kappa +AA_\kappa ( S')^2\mathrm{d}y +\sigma \int _0^T -A''A_\omega +AA_\omega ( S')^2\mathrm{d}y\right] . \end{aligned}$$

Next we integrate some terms by parts, using that \(AA'=(A^2)'/2\). This leads to

$$\begin{aligned} \mathbf{v}_0{\mathcal {L}}^{(1)}{} \mathbf{u}_2&=-2i\sigma \left[ \gamma \int _0^T (A')^2_E/2 +AA_E( S')^2\mathrm{d}y\right. \\&\quad \left. +\rho \int _0^T (A')^2_\kappa /2 +AA_\kappa ( S')^2\mathrm{d}y +\sigma \int _0^T (A')^2_\omega /2+AA_\omega ( S')^2\mathrm{d}y\right] . \end{aligned}$$

Now we use that \(\int _0^T (A')^2\mathrm{d}y = K\) with it’s relevant derivatives to simplify:

$$\begin{aligned} \mathbf{v}_0{\mathcal {L}}^{(1)}{} \mathbf{u}_2&=-2i\sigma \left[ \gamma T/2 -\rho \eta /2-\sigma M/4\right. \\&\quad \left. +\gamma \int _0^T AA_E( S')^2\mathrm{d}y+\rho \int _0^T AA_\kappa ( S')^2\mathrm{d}y+\sigma \int _0^T AA_\omega ( S')^2\mathrm{d}y\right] . \end{aligned}$$

Finally, one can show that \(AA_E( S')^2=\left( \frac{A^2( S')^2}{2}\right) _E-A^2 S' S'_E=\left( \frac{\kappa S'}{2}\right) _E-\kappa S'_E=-\kappa S'_E/2\). The same is true with \(\omega \) derivatives, and similar is true with \(\kappa \) derivatives. This leads to

$$\begin{aligned} \mathbf{v}_0{\mathcal {L}}^{(1)}{} \mathbf{u}_2&=-2i\sigma \left[ \frac{\gamma T}{2}-\frac{\rho \eta }{2}-\frac{\sigma M}{4}\right. \\&\quad \left. +\gamma \int _0^T -\kappa S'_E/2\mathrm{d}y+\rho \int _0^T -\kappa S'_\kappa /2+ S'/2\mathrm{d}y+\sigma \int _0^T -\kappa S'_\omega /2\mathrm{d}y\right] . \end{aligned}$$

Now, since \(S(T)-S(0)=\eta \), we can complete the integration and simplify using \(\gamma \eta _E+\rho \eta _\kappa +\sigma \eta _\omega =0\) to obtain

$$\begin{aligned} \mathbf{v}_0{\mathcal {L}}^{(1)}{} \mathbf{u}_2=-2i\sigma \left[ \frac{\gamma T}{2}-\frac{\sigma M}{4}\right] . \end{aligned}$$

In a similar way, one can find

$$\begin{aligned} \mathbf{v}_2{\mathcal {L}}^{(1)}{} \mathbf{u}_2 = -2i\sigma \left[ \frac{\tau T}{2}+\frac{\sigma \kappa T}{4}\right] . \end{aligned}$$

Now, to obtain the matrix elements of \(\mathbf{M}^{(0)}\), we will need 8 more quantities: \(\mathbf{v}_{1,3}{\mathcal {L}}^{(2)}{} \mathbf{u}_{0,2}\) and \(\mathbf{v}_{1,3}{\mathcal {L}}^{(1)}{\mathcal {L}}^{-1}{\mathcal {L}}^{(1)}\mathbf{u}_{0,2}\). The first four are:

$$\begin{aligned} \mathbf{v}_1{\mathcal {L}}^{(2)}{} \mathbf{u}_0&=\sigma ^2 M,\\ \mathbf{v}_1{\mathcal {L}}^{(2)}{} \mathbf{u}_2&=\mathbf{v}_3{\mathcal {L}}^{(2)}{} \mathbf{u}_0 =\sigma ^2\kappa T,\\ \mathbf{v}_3{\mathcal {L}}^{(2)}{} \mathbf{u}_2&= \sigma ^2(2ET-\omega M-\zeta U), \end{aligned}$$

where \(U=\int _0^TF(A^2)\mathrm{d}y\). Three of the latter four follow from \(\mathbf{v}_{0,2}{\mathcal {L}}^{(1)}{} \mathbf{u}_{0,2}\) due to the fact that \({\mathcal {L}}^{(1)}{} \mathbf{u}_0=2i\mathbf{u}_2\) and \(\mathbf{v}_1{\mathcal {L}}^{(1)}=2i\mathbf{v}_3\). Thus

$$\begin{aligned} \mathbf{v}_1{\mathcal {L}}^{(1)}{\mathcal {L}}^{-1}{\mathcal {L}}^{(1)}{} \mathbf{u}_0&=2i\mathbf{v}_2{\mathcal {L}}^{(1)}{} \mathbf{u}_0\\&=2\sigma \left( \nu T+\frac{\sigma M}{2}\right) \end{aligned}$$

and (also using symmetry)

$$\begin{aligned} \mathbf{v}_1{\mathcal {L}}^{(1)}{\mathcal {L}}^{-1}{\mathcal {L}}^{(1)}\mathbf{u}_2=\mathbf{v}_3{\mathcal {L}}^{(1)}{\mathcal {L}}^{-1}{\mathcal {L}}^{(1)}\mathbf{u}_0= 2\sigma \left( \tau T+\frac{\sigma \kappa T}{2}\right) . \end{aligned}$$

Finally, it remains to compute \(\mathbf{v}_{3}{\mathcal {L}}^{(1)}{\mathcal {L}}^{-1}{\mathcal {L}}^{(1)}\mathbf{u}_{2}\). First, we note that we can write

$$\begin{aligned} {\mathcal {L}}^{(1)}{} \mathbf{u}_2&= -i\sigma \left( \begin{array}{c}0\\ 2A_{yy}-2A(S_y)^2\end{array}\right) \\&= 2i\omega \mathbf{u}_0+2i\zeta \mathbf{u}_4, \end{aligned}$$

using Equations (11), (12), (13). Then we can write

$$\begin{aligned} \mathbf{v}_3{\mathcal {L}}^{(1)}{\mathcal {L}}^{-1}{\mathcal {L}}^{(1)} \mathbf{u}_2 = 2i\omega \mathbf{v}_3{\mathcal {L}}^{(1)}{} \mathbf{u}_1 +2i\zeta \mathbf{v}_3{\mathcal {L}}^{(1)}{} \mathbf{u}_5. \end{aligned}$$

We already know the first two terms, and the third can be integrated in a similar way as

$$\begin{aligned} \mathbf{v}_3{\mathcal {L}}^{(1)}{} \mathbf{u}_5 = -2i\sigma \left[ \frac{\xi T}{2}-\frac{\sigma U}{4}\right] . \end{aligned}$$

Finally, we can combine and simplify to obtain

$$\begin{aligned} \mathbf{v}_{3}{\mathcal {L}}^{(1)}{\mathcal {L}}^{-1}{\mathcal {L}}^{(1)}\mathbf{u}_{2} =2\sigma \left( \frac{2\omega \gamma T}{2}-\frac{2\omega \sigma M}{4} +\zeta \xi T-\frac{\sigma \zeta U}{2}\right) . \end{aligned}$$

Putting all these quantities together, we obtain expressions for all the matrix elements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leisman, K.P., Bronski, J.C., Johnson, M.A. et al. Stability of Traveling Wave Solutions of Nonlinear Dispersive Equations of NLS Type. Arch Rational Mech Anal 240, 927–969 (2021). https://doi.org/10.1007/s00205-021-01625-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01625-8

Navigation