Skip to main content
Log in

An Apparatus for the Directional Spectral Emissivity Measurement in the Near Infrared Band

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A measurement apparatus based on the optical fiber spectrometer is established to measure the directional spectral emissivity in the near infrared band. The sample is heated by a self-designed silicon carbide heater. The measurement angle can be adjusted from 0° to 82° by rotating the fiber collimating lens installed in a motorized rotary stage. The radiation signals of the sample and blackbody can be detected with a micro-optical fiber spectrometer in real time. The spectral emissivities of silicon wafer, silicon carbide, molybdenum, and tungsten are measured to verify the reproducibility and reliability of the apparatus. Furthermore, the directional spectral emissivity of high-purity chromium is investigated in the wavelength range from 950 nm to 1600 nm and the temperature range from 823 K to 1073 K. The influences of wavelength, temperature, and measurement angle on the spectral emissivity are analyzed in detail. It is found that the directional spectral emissivity of chromium decreases with the increasing wavelength and the temperature. The spectral emissivity of chromium rises slowly and then falls sharply with the increasing measurement angle. The combined uncertainty of emissivity measurement is evaluated, which is no more than 3 % for the wavelength and temperature range considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Cao, S.J. Weber, S.O. Martin et al., In situ measurements of spectral emissivity of materials for very high temperature reactors. Nucl. Technol. 175(2), 460–467 (2011)

    Article  Google Scholar 

  2. H.J. Jo, J.L. King, K. Blomstrand et al., Spectral emissivity of oxidized and roughened metal surfaces. Int. J. Heat Mass Transf. 115(12), 1065–1071 (2017)

    Article  Google Scholar 

  3. K. Yu, H.Y. Zhang, Y. Liu, Y.F. Liu, Study of normal spectral emissivity of copper during thermal oxidation at different temperatures and heating times. Int. J. Heat Mass Transf. 129, 1066–1074 (2019)

    Article  Google Scholar 

  4. B. Zhang, J. Redgrove, J. Clark, A transient method for total emissivity determination. Int. J. Thermophys. 25(2), 423–438 (2004)

    Article  ADS  Google Scholar 

  5. C.D. Wen, Study of steel emissivity characteristics and application of multispectral radiation thermometry (MRT). J. Mater. Eng. Perform. 20(2), 289–297 (2011)

    Article  Google Scholar 

  6. C.D. Wen, T.Y. Chai, Examination of multispectral radiation thermometry using linear and log-linear emissivity models for aluminum alloys. Heat Mass Trans. 47(7), 847–856 (2011)

    Article  ADS  Google Scholar 

  7. C.Y. Niu, H. Qi, Y.T. Ren, L.M. Ruan, Apparent directional spectral emissivity determination of semitransparent materials. Chin. Phys. B. 25(4), 380–392 (2016)

    Article  Google Scholar 

  8. Y.F. Liu, Z.L. Hu, D.H. Shi, K. Yu, Experimental investigation of emissivity of steel. Int. J. Thermophys. 34(3), 496–506 (2013)

    Article  ADS  Google Scholar 

  9. F. Zhang, K. Yu, K.H. Zhang et al., An emissivity measurement apparatus for near infrared spectrum. Infrared. Phys. Technol. 73, 275–280 (2015)

    Article  ADS  Google Scholar 

  10. A. Gahmousse, K. Ferria, J. Rubio et al., Influence of Fe2O3 on the structure and near-infrared emissivity of aluminosilicate glass coatings. Appl. Phys. A. 126, 9 (2020)

    Article  Google Scholar 

  11. R.A.M. Ferreira, L.F.P. Daniel, H.C.D. Leonardo et al., A directional-spectral approach to estimate temperature of outdoor PV panels. Sol. Energy. 183, 782–790 (2019)

    Article  ADS  Google Scholar 

  12. I.D.A. González, T. Echánizb, R. Fuenteb et al., Infrared emissivity of copper-alloyed spinel black coatings for concentrated solar power systems. Sol. Energy Mater. Sol. C. 200, 109961 (2019)

    Article  Google Scholar 

  13. Y.M. Guo, S.J. Pang, Z.J. Luo et al., Measurement of directional spectral emissivity at high temperatures. Int. J. Thermophys. 40(1), 10 (2019)

    Article  ADS  Google Scholar 

  14. B. Zhang, J. Redgrove, J. Clark, New apparatus for measurement of the spectral, angular, and total emissivity of solids. High Temp. High Pressures. 35–36(3), 289–302 (2003)

    Article  Google Scholar 

  15. L.D. Campo, R.B. Pérez-Sáez, X. Esquisabel et al., New experimental device for infrared spectral directional emissivity measurements in a controlled environment. Rev. Sci. Instrum. 77(11), 113111 (2006)

    Article  ADS  Google Scholar 

  16. G. Teodorescu, P.D. Jones, Spectral and directional emittance of alumina at 823 K. J. Mater. Sci. 43(22), 7225–7229 (2008)

    Article  ADS  Google Scholar 

  17. T. Iuchi, A. Gogami, Simultaneous measurement of emissivity and temperature of silicon wafers using a polarization technique. Measurement 43(5), 645–651 (2010)

    Article  ADS  Google Scholar 

  18. C. Monte, B. Gutschwager, S.P. Morozova, J. Hollandt, Radiation thermometry and emissivity measurements under vacuum at the PTB. Int. J. Thermophys. 30(1), 203–219 (2009)

    Article  ADS  Google Scholar 

  19. A. Adibekyan, C. Monte, M. Kehrt et al., Emissivity measurement under vacuum from 4 µm to 100 µm and from – 40 ℃ to 450 ℃ at PTB. Int. J. Thermophys. 36, 283–289 (2015)

    Article  ADS  Google Scholar 

  20. P. Wang, Z. Xie, Z.W. Hu, Study on the Multi-wavelength emissivity of GCr15 steel and its application on temperature measurement for continuous casting billets. Int. J. Thermophys. 37(12), 129 (2016)

    Article  ADS  Google Scholar 

  21. P. Wang, Z.W. Hu, Z. Xie, M. Yan, A new experimental apparatus for emissivity measurements of steel and the application of multi-wavelength thermometry to continuous casting billets. Rev. Sci. Instrum. 89(5), 054903 (2018)

    Article  ADS  Google Scholar 

  22. R.B. Pérez-Sáez, L.D. Campo, M.J. Tello, Analysis of the accuracy of methods for the direct measurement of emissivity. Int. J. Thermophys. 29(3), 1141–1155 (2008)

    Article  ADS  Google Scholar 

  23. L. González-Fernández, R.B. Pérez-Sáez, L.D. Campo, M.J. Tello, Analysis of calibration methods for direct emissivity measurements. Appl. Opt. 49(14), 2728–2735 (2010)

    Article  ADS  Google Scholar 

  24. K.H. Zhang, K. Yu, Y.F. Liu, Y.L. Zhao, An improved algorithm for spectral emissivity measurements at low temperatures based on the multi-temperature calibration method. Int. J. Heat Mass Transf. 114, 1037–1044 (2017)

    Article  Google Scholar 

  25. B. Kong, T. Li, Q.T. Eri, Normal spectral emissivity of GH536 (HastelloyX) in three surface conditions. Appl. Therm. Eng. 113(2), 20–26 (2017)

    Article  Google Scholar 

  26. T. Iuchi, T. Seo, Radiation thermometry of silicon wafers based on emissivity-invariant condition. Appl. Opt. 50(3), 323–328 (2011)

    Article  ADS  Google Scholar 

  27. T. Iuchi, T. Furukawa, S. Wada, Emissivity modeling of metals during the growth of oxide film and comparison of the model with experimental results. Appl. Opt. 42(13), 2317–2326 (2003)

    Article  ADS  Google Scholar 

  28. B. Hay et al., New facilities for the measurements of high-temperature thermophysical properties at LNE. Int. J. Thermophys. 35(9–10), 1712–1724 (2014)

    Article  ADS  Google Scholar 

  29. C. Cagran, G. Pottlacher, M. Rink, W. Bauer, Spectral emissivities and emissivity X-Points of Pure Molybdenum and Tungsten. Int. J. Thermophys. 26(4), 1001–1015 (2005)

    Article  ADS  Google Scholar 

  30. M.F. Modest, Radiative Heat Transfer, 2nd edn. (Academic Press, New York, 2003).

    MATH  Google Scholar 

  31. G. Teodorescu, P.D.Jones, R. A. Overfelt, B. Guo, High temperature emissivity of high purity titanium and zirconium. In: Proceedings of the Sixteenth Symposium on Thermophysical Properties, 2006.

  32. R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, 3rd edn. (Hemisphere Publishing, Bristol, 1992).

    Google Scholar 

  33. L.D. Campo, R.B. Perez-Saez, L. Gonzalez-Fernandez, M.J. Tello, Combined standard uncertainty in direct emissivity measurements. J. Appl. Phys. 107(11), 113510 (2010)

    Article  ADS  Google Scholar 

  34. K.H. Zhang, Y.F. Liu, Modified two-temperature calibration method for emissivity measurements at high temperatures. Appl. Therm. Eng. 168, 114854 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61675065, U1804261, 61627818, 62075058), Outstanding Youth Foundation of Henan Normal University (20200171).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaihua Zhang or Yufang Liu.

Ethics declarations

Conflict of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Tong, R., Zhang, K. et al. An Apparatus for the Directional Spectral Emissivity Measurement in the Near Infrared Band. Int J Thermophys 42, 80 (2021). https://doi.org/10.1007/s10765-021-02813-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02813-0

Keywords

Navigation